共查询到20条相似文献,搜索用时 78 毫秒
1.
Most of traditional linear poly(ethylene terephthalate)(PET) resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures, which are not enough to support and keep cells. An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride(PMDA) or pentaerythritol(PENTA) as modifying monomers to obtain PETs with high melt strength. The influence of amounts of modifying monomers on the properties of modified PET was investigated. It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength. With increasing the amount of the modifying monomer, the melt strength of the modified PET increased. But when the amount of PENTA reached 0.35% or PMDA reached 0.9%, crosslinking phenomenon was observed in the modified PET. Supercritical carbon dioxide(ScCO2) was employed as physical foaming agent to evaluate the foaming ability of modified PETs. The modified PETs had good foaming properties at 14 MPa of CO2 pressure with foaming temperature ranging from 265 °C to 280 °C. SEM micrographs demonstrated that both modified PET foams had homogeneous cellular structures, with cell diameter ranging from 35 μm to 49 μm for PENTA modified PETs and 38 μm to 57 μm for PMDA modified ones. Correspondingly, the cell density had a range of 3.5×107cells·cm 3to 7×106 cells·cm 3for the former and 2.8×107cells·cm 3to 5.8×106cells·cm 3for the latter. 相似文献
2.
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%. 相似文献
3.
The poly(ɛ-caprolactone)/poly(ethylene glycol) (PCL/PEG) blends reveal a miscibility window of upper critical solution temperature (UCST) character. The kinetics of liquid–liquid phase separation (LLPS) for the blends of PCL/PEG is investigated by time-resolved small angle light scattering (TRSALS). The time evolution of scattering profile is analyzed by linear Cahn–Hilliard theory for early stage of spinodal decomposition (SD). The evolution of the maximum intensity Im(t) and the corresponding wavenumber qm(t) obey the power-law scheme (Im(t)∼tβ and qm(t)∼t−α). A relation of β=3α in late stage is obtained almost the same scaling exponents with β≅1 and α≅1/3 for various quenching depths. The α≅1/3 implied that a coarsening mechanism at the late stage of phase separation may proceed with Ostwald ripening or Brownian coalescence process. Besides, the intermediate and late stages of SD can be scaled into a universal from represented well by Furukawa’s structure factor. The percolation to cluster transition is accompanied with α∼0.13→1/3 from intermediate to late stage of SD for the off-critical mixture of PCL/PEG (4/6) blend. In this study, the experimental result demonstrates that the crystallization is a viable mechanism to lock phase-separated structure of the blends. The competition between phase separation and crystallization has been suggested to determine the final morphology. 相似文献
4.
《塑料、橡胶和复合材料》2013,42(7):360-370
AbstractSimulations of the injection stretch–blow moulding process have been developed for the manufacture of poly(ethylene terephthalate) bottles using the commercial finite element package ABAQUS/standard. Initially a simulation of the manufacture of a 330 mL bottle was developed with three different material models (hyperelastic, creep, and a non-linear viscoelastic model (Buckley model)) to ascertain their suitability for modelling poly(ethylene terephthalate). The Buckley model was found to give results for the sidewall thickness that matched best with those measured from bottles off the production line. Following the investigation of the material models, the Buckley model was chosen to conduct a three-dimensional simulation of the manufacture of a 2 L bottle. It was found that the model was also capable of predicting the wall thickness distribution accurately for this bottle. In the development of the three-dimensional simulation a novel approach, which uses an axisymmetric model until the material reaches the petaloid base, was developed. This resulted in substantial savings in computing time. 相似文献
5.
6.
1 INTRODUCTIONPoly(3-hydroxybutyrate)(PHB)is an intracellular carbon and energy storage material accumu-lated by many kinds of microorganism under unfavorable growth conditions such as limitation of(NH_4)_2SO_4,PO_3~(2-),Mg~(2 ) and /or oxygen~(1-3).PHB is a biodegradable thermoplastic polyesterwhich can be used as similar as the conventional nondegradable plastics in various ways.Al-caligenes eutrophus has been widely used for the production of PHB because it is easy to grow, 相似文献
7.
Study on Synthesis and Chloramphenicol Release of Poly(2-hydroxyethylmethacrylate-co-acrylamide) Hydrogels 总被引:3,自引:1,他引:3
In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter. 相似文献
8.
In this study, poly(y-glutamic acid)-coated Fe3O4 magnetic nanoparticles (y-PGA/Fe304 MNPs) were successfully fabricated using the co-precipitation method. Fe3O4 MNPs were also prepared for comparison. The av erage size and specific surface area results reveal that 7-PGA/Fe304 MNPs (52.4 nm, 88.41 m2.g-1) have smaller particle size and larger specific surface area_ than Fe3O4 MNPs (62.0 nm, 76.83 mLg-1). The y-PGA/Fe3O4 MNPs 相似文献
9.
0 前言
江苏恒盛化肥有限公司从2007年末起,在工业园区新增“18·30”装置及200kt/a低压甲醇装置各1套。笔者主要负责低压甲醇系统的甲醇贮罐(6个3000m^3储罐,8个240m^3贮罐)制作和安装项目,其设计的好坏关系到贮罐的安全可靠性以及今后维修和工程造价的问题。在设计中必须考虑贮罐的强度、刚度、稳定性和防腐措施,同时合理地选择设计参数及贮罐的结构形式,并且尽可能地节省钢材,力争优化设计。 相似文献
10.
11.
Poly(butylene terephthalate) (PBT) was depolymerized in excess methanol at high‐temperature (473–523 K) and high‐pressure (4–14 MPa) conditions. Considering the critical point of methanol (512.6 K, 8.09 MPa), the reaction pressure was varied over the range of 6–14 MPa at the reaction temperature of 513 K. As a result, ca. 20 min was required to recover dimethyl terephthalate and 1,4‐butanediol, quantitatively, at any pressure, indicating that the supercritical state of methanol is not a key factor of degradation of PBT and that the effect of pressure is little. On the contrary, when the reaction temperature was varied over the range of 473–523 K at the pressure 12 MPa, the decomposition rate constant of PBT at the reaction temperatures (503–523 K) higher than the melting temperature of PBT (500 K) was much higher than that at 473–483 K. This result indicates that melting of PBT is an important factor for the short‐time depolymerization of PBT. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3228–3233, 2000 相似文献
12.
13.
To reclaim the monomers or prepare intermediates suitable for other polymers zinc acetate catalayzed glycolysis of waste poly(ethylene terephthalate) (PET) was carried out with ethylene or propylene glycol, with PET/glycol molar ratios of1 : 0.5–1 : 3, in xylene at 170–245°C. During the multiphase reaction, depolymerization products transferred to the xylene medium from the dispersed PET/glycol droplets, shifting the equilibrium to glycolysis. Best results were obtained from the ethylene glycol (EG) reaction at 220°C, which yielded 80 mol % bis-2-hydroxyethyl terephthalate monomer and 20 mol % dimer fractions in quite pure crystalline form. Other advantages of employment of xylene in glycolysis of PET were improvement of mixing at high PET/EG ratios and recycling possibility of excess glycol, which separates from the xylene phase at low temperatures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2311–2319, 1998 相似文献
14.
Pellets of poly(ethylene terephthalate) (PET; 0.48–1.92 g) were heated in anhydrous ethylene glycol (EG; 5 mL) with 2-equivs of NaOH at 150°C for 80 min or 180°C for 15 min to convert them quantitatively to disodium terephthalate (Na2-TPA) and EG. The disodium salt was precipitated quantitatively in pure state from the EG solution and separated readily. The other product EG, being the same component to the solvent, remains in the solution and can be obtained after distillation as a part of the solvent. The rate of decomposition was significantly accelerated by the addition of ethereal solvents to EG, such as dioxane, tetrahydrofuran, and dimethoxyethane. The reaction system is simple; no water and no extra reagent other than NaOH and EG are used. A few recycling systems of PET can be designed on the basis of the present alkali decomposition reaction. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 595–601, 1997 相似文献
15.
Yves De Puydt Patrick Bertrand Yvan Novis Roland Caudano Gusty Feyder Pierre Lutgen 《Polymer International》1989,21(2):141-146
Poly(ethylene terephthalate) (PET) Mylar® samples were treated by corona discharge in order to improve their adhesive properties. The corona treatments were performed in different atmospheres including nitrogen, ammonia and air. X-ray photoelectron spectroscopy (XPS) was used to investigate the chemical modifications induced at the PET surface by these corona treatments. XPS results show that nitrogen incorporation takes place in the form of non-oxygenated nitrogen functionalities, like amine or cyano groups. These are present at the surface of all the corona-treated samples but in different concentrations depending on the gases used in the corona discharge. Furthermore, XPS analyses performed after heating of the treated samples show a higher thermal stability of the corona-induced surface modifications in the case of nitrogen and ammonia. Ion scattering spectroscopy (ISS) and static secondary ion mass spectroscopy (SIMS) analyses were also performed because of their higher surface sensitivity compared with XPS: ISS reveals that nitrogen is not present at the topmost surface layer of the treated samples but is incorporated just beneath. The outermost surface layer presents a composition rich in oxygen. Finally, static SIMS spectra show that corona treatment induces more surface degradation when performed in air compared with nitrogen or ammonia. These results are discussed in relation to adhesive properties of PET. 相似文献
16.
利用分散蓝60对涤纶进行超临界流体染色的实验研究 总被引:3,自引:0,他引:3
超临界流体染色是近年来提出的可以真正实现无水染色及从源头上解决染色工业水污染问题的一种新的染色工艺.为了对该工艺的染色过程、适宜的操作条件及可行性进行研究,在自建的高压染色设备上,利用分散蓝60对涤纶进行超临界流体染色实验,考察上染率及染色深度K/S值随操作压力、温度和染色时间的变化规律,进而确定出最适宜的工艺操作条件为:压力28 MPa,温度120℃和染色时间80 min.通过实验过程及对染色结果的牢度评价,充分显示了超临界流体染色工艺的可行性和优越性. 相似文献
17.
18.
Blends of poly(ethylene terephthalate) (PET) and polypropylene (PP) at composition 80/20 with and without a compatibilizing
agent were studied. Both materials are widely used in the soft drink bottle industry. The compatibilizing agent was a maleic
anhydride grafted polyethylene-octene elastomer (POE-g-MA). The olefinic segment of POE is compatible with PP, whereas the maleic anhydride is affined with PET carbonyl groups.
The effectiveness of the compatibilizing agent was evaluated using different techniques, such as Fourier transform IR spectroscopy,
mechanical analysis, scanning electron microscopy, dynamic mechanical analysis, and rheological analysis. The results show
that the addition of POE-g-MA promotes a fine dispersed-phase morphology, and improves process ability and toughness of these blends. Shifts in the
glass-transition temperature of the PET phase and the increase in the melt viscosity of the compatibilized blends indicated
enhanced interactions between the discrete PET and PP phases induced by the functional compatibilizer. 相似文献
19.
聚对苯二甲酸乙二醇酯在超临界甲醇中解聚的研究 总被引:6,自引:1,他引:6
在间歇高压反应器中研究了聚对苯二甲酸乙二醇酯(PET)在超临界甲醇中的解聚反应特性, 通过扫描电镜观测了不同解聚条件下固相聚合物的内部结构,提出了解聚反应历程并得到了不同解聚条件下反应表观活化能。在甲醇的非临界区域,PET在甲醇中表现为溶胀过程,解聚程度低,反应在聚合物表面进行,反应表观活化能为27.19kJmol-1,解聚过程为传质、扩散控制;在甲醇的临界区域, PET完全溶于甲醇,解聚反应在均相中进行,反应表观活化能为89.79kJmol-1,为化学反应控制。 相似文献
20.
《Polymer》2003,44(24):7281-7289
A series of poly(ethylene terephthalate-co-ethylene 5-sodiosulfoisophthalate) copolyesters containing from 1 up to 50 mol% of sulfonated units was prepared by melt polycondensation from ethylene glycol and mixtures of dimethyl terephthalate and dimethyl 5-sodiosulfoisophthalate. The resulting copolymers had a random microstructure and contained oligo(ethylene glycol) units in amounts increasing with the content in sulfonated isophthalate units. Copolyesters with more than 20 mol% of 5-sodiosulfoisophthalic units were amorphous and easily soluble in water. The hydrodegradability of the copolyesters was very high as compared to poly(ethylene terephthalate), and increased with the content in sulfonated units. It was demonstrated that the susceptibility to acidic hydrolysis of these copolymers is mainly due to the presence of the sodium sulfonate groups, the influence of the oligo(ethylene glycol) units in this regard being noticeable but limited. 相似文献