首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Combining disk springs having negative stiffness with a rolling-ball in parallel is proposed in this paper.It is used to reduce the system stiffness and the positioning error in a non-ideal environment.The characteristics of a disk spring are analyzed.The dynamic equation of its motion has been obtained based on Newton's second law.After definition of a error margin,the dynamic equation of the motion can be treated as a Duffimg oscillator,and the influences of non-dimensional parameters on the stiffness and transmissibility are studied.The natural frequency and transmissibility are achieved in a linearization range,where the ratio of linear to nonlinear items is small enough.The influence of mass ratio and non-dimensional parameters on natural frequency are analyzed.Finally,a comparison of numerical example demonstrates that the QZS system can realize a lower stiffness within an increased range.  相似文献   

2.
A study on roll gap profile (strip profile) control was accomplished in a 1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contour caused by grinding and wear, the effectiveness of work roll bending were discussed. Using a finite element model, the effects of roll contours (ground and wear) on strip profile were investigated. The roll bending effect on strip thickness was also analyzed. It is pointed out that there are some special features of flatness control in the temper mill: during temper rolling, roll deformation is slight due to small rolling load, and the loaded roll gap profile mainly depends on work roll contour, while the backup roll has a little effect on gap crown; the effect of bending force on gauge can not be ignored due to the coupling between flatness control and gauge control. A new roll contour arrangement adaptable to the mill was presented and has been put into practical production. The application of the new set of rolls showed some good results: larger crown control range of work roll bender, higher rolling stability, better strip profile and flatness quality.  相似文献   

3.
A great deal of research and practical production indicated that a perfect shape control system needs a precise prediction model of roll wear. According to the practical wear curve of work roll in Angang ASP1700 hot strip mill, which was measured by a roll-profilemeter, the model of wear curve caused by one single strip was estabfished. The prediction of work-roll wear was achieved by combining Fortran language and practical technology parameters. The calculated results agreed well with the measured.  相似文献   

4.
The dynamic model of cold rolling mill based on strip flatness and thickness integrated control was proposed,containing the following sub-models:the rolling process model,the dynamic model of rolls along axial direction,and the compensation model.Based on the rule of volume flow rate,the dynamic rolling process model was built.The work roll and backup roll were taken as elastic continuous bodies,the effect of shear and moment of inertia were taken into consideration,and then the dynamic model of rolls was built.The two models were coupled together,and the dynamic model of rolling mill was built.In the dynamic model,the thermal expansion of the rolls,the wear of the rolls and other related parameters can not be considered.In order to compensate the dynamic model,the coupled static model of rolls and strip was applied.Then,according to the inner relationship of these models,the dynamic model and the compensation model were coupled,and the dynamic model of rolling mill based on the strip flatness and thickness integrated control was built.The dynamic simulation of the rolling process was made,and the dynamic thickness and the dynamic flatness information were obtained.This model not only provides a theory basis for the virtual rolling,but also provides a platform for the application of advanced control theory.  相似文献   

5.
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.  相似文献   

6.
The coiling temperature control of a typical steel strip mill was investigated.Due to the high speed of a strip and complex circumstance,it is very hard to set up a cooling model with high accuracy.A simplified dynamic model was proposed,based on which a cooling control scheme with combined feedforward,feedback and adaptive algorithms was developed.Meanwhile,the ge- netic algorithms were used for the optimization of model parameters.Simulations with a model validated using actual plant data were conducted,and the results have confirmed the effectiveness of the proposed control methods.At last,a simulation system for coiling temperature control was developed.It can be used for new product trials and newcomer training.  相似文献   

7.
In order to control the locomotive wheel (axle) load distribution, a shimming process to adjust the locomotive secondary spring loads was heretofore developed. An immune dominance clonal selection multi-objective algorithm based on the artificial immune system was presented to further improve the performance of the optimization algorithm for locomotive secondary spring load adjustment, especially to solve the lack of control on the output shim quantity. The algorithm was designed into a two-level optimization structure according to the preferences of the problem, and the priori knowledge of the problem was used as the immune dominance. Experiments on various types of locomotives show that owing to the novel algorithm, the shim quantity is cut down by 30%-60% and the calculation time is about 90% less while the secondary spring load distribution is controlled on the same level as before. The application of this optimization algorithm can significantly improve the availability and efficiency of the secondary spring adjustment process.  相似文献   

8.
Fault rockburst is treated as a strain localization problem under dynamic loading condition considering strain gradient and strain rate. As a kind of dynamic fracture phenomena, rockburst has characteristics of strain localization, which is considered as a one-dimensional shear problem subjected to normal compressive stress and tangential shear stress. The constitutive relation of rock material is bilinear (elastic and strain softening) and sensitive to shear strain rate. The solutions proposed based on gradientdependent plasticity show that intense plastic strain is concentrated in fault band and the thickness of the band depends on the characteristic length of rock material. The post-peak stiffness of the fault band was determined according to the constitutive parameters of rock material and shear strain rate. Fault band undergoing strain softening and elastic rock mass outside the band constitute a system and the instability criterion of the system was proposed based on energy theory. The criterion depends on the constitutive relation of rock material, the structural size and the strain rate. The static result regardless of the strain rate is the special case of the present analytical solution. High strain rate can lead to instability of the system.  相似文献   

9.
The hardware and software design of two digital control systems based on 80C196KB MCU for flash butt welder is introduced in this paper.The welding power supply is made of six-phase half-wave rectifier.The welding outer characteristic of welding machine is realized by digital PI algorithm with the voltage close-loop feedback.The flashing curve is finished by elec- tric-hydraulic servo valve.The process control system transfers datum with power supply system by a serial communication inter- face.The parameters of the control systems are collected by photoelectrical seclusion to avoid the disturbing of the electromagnetism in welding process.  相似文献   

10.
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems, a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed. The system was constituted of a pump-controlled part and a valve-controlled part, the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder. Based on the system characteristics, a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses, and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision. The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.  相似文献   

11.
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.  相似文献   

12.
Nanostructured Fe-doped titanium dioxide was synthesized from titanium containing electric furnace molten slag (TCEFMS) by using an alkali fusion, followed by a hydrolyzation-acidolysis-cMcination route. The effects of Mkali/slag mass ratio, calcinating temperature, calcinating time, and water/slag mass ratio on the extraction efficiency and purity of products were systematically studied in this paper. It is indicated that the best extraction efficiency of nanostructured Fe- doped titanium dioxide is 99.35%, when the molten slag is calcinated at 700℃ for 1 h with the mass ratio of alkali/molten slag of 1.5:1. The influence of alkali/slag mass ratio on the photocatalytic activity of final products was evaluated by the photodegradation of methyl blue under visible light irradiation. A maximum photodegradation efficiency of 88.12% over 30 min was achieved under the optimum conditions.  相似文献   

13.
This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.  相似文献   

14.
The microstructure and mechanical properties of A1-4.5wt% Cu Mloy reinforced with different volume fractions (1.5vo1%, 3vo1%, and 5vo1%) of alumina nanoparticles, fabricated using stir casting method, were investigated. CMculated amounts of alumina nanoparticles (about ~50 nm in size) were ball-milled with aluminum powders in a planetary ball mill for 5 h, and then the packets of milled powders were incorporated into molten Al-4.5wt% Cu alloy. Microstructural studies of the nanocomposites reveal a uniform distribution of alumina nanoparticles in the A1-4.5wt% Cu matrix. The results indicate an outstanding improvement in compression strength and hardness due to the effect of nanoparticle addition. The aging behavior of the composite is also evaluated, indicating that the addition of alumina nanoparticles can accelerate the aging process of the Mloy, resulting in higher peak hardness values.  相似文献   

15.
To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.  相似文献   

16.
This work aims to provide a relationship of how the key operational variables of frother type and impeller speed affect the size of bubble (D32). The study was performed using pilot-scale equipment (0.8 m^3) that is up to two orders of magnitude larger than equipment used for studies performed to date by others, and incorporated the key process variables of frother type and impeller speed. The results show that each frother family exhibits a unique CCC95-HLB relationship dependent on n (number of C-atoms in alkyl group) and m (number of propylene oxide group). Empirical models were developed to predict CCC95 from HLB associated with other two parameters a and ft. The impeller speed-bubble size tests show that D32 is unaffected by increased impeller tip speed across the range of 4.6 to 9.2 m/s (representing the industrial operating range), although D32 starts to increase below 4.6 m/s. The finding is valid for both coalescing and non-coalescing conditions. The results suggest that the bubble size and bubble size distribution (BSD) being created do not change with increasing impeller speed in the quiescent zone of the flotation.  相似文献   

17.
S.  O.  Bamaga  M.  Md.  Tahir  T.  C.  Tan S. Mohammad  N.  Yahya  A.  L.  Saleh M. Mustaffar  M.  H.  Osman  A.  B.  A.  Rahman 《中南工业大学学报(英文版)》2013,(12):3689-3696
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.  相似文献   

18.
This study described the structural, dielectric, and piezoelectric behavior of Pb1-xSrx[(Zr0.52Ti0.48)0.95(Mn1/3Nb2/3)0.05]O3 ceramics (PSZT-PMN, x=0, 0.025, 0.050, and 0.075), prepared by a semi-wet route. X-ray diffraction, dielectric, and piezoelectric investigations were carried out to analyze the crystal structure. The relative dielectric constant and dielectric loss were both calculated as the functions of temperature. The room-temperature dielectric constant reaches a maximum for a Sr2+-modified PZT-PMN ceramic with an x value of 0.050, which corresponds to the morphotropic phase boundary (MPB). Raman spectroscopy studies also confirm the existence of this MPB for x=0.050. The piezoelectric strain coefficients (d33) value shows a maximum response for this composition. In addition, the phase transition temperature decreases significantly when the Sr2+concentration increases in the PZT-PMN ceramics.  相似文献   

19.
Thermogravimetric study of rubber compositions (operating glove and catheter) in medical waste was carried out using the thermogravimetric analyser (TGA),at the heating rate of 20 ℃/min in a stream of N2.The results indicate that the decomposition process of operating glove appears an obvious mass loss stage at 250-485 ℃,while catheter has two obvious stages at 240-510 ℃ and 655-800 ℃,respectively; both samples present endothermic pyrolysis reaction; the decomposition of operating glove and the first mass loss stage of catheter are in agreement with natural rubber pyrolysis; the second mass loss stage of catheter corresponds to CaCO3 decomposition.Based on the experimental results,a novel two-step four-reaction model was established to simulate the whole continuous processes,which could more satisfactorily describe and predict the pyrolysis processes of rubber compositions,being more mechanistic and conveniently serving for the engineering.  相似文献   

20.
The effects of various SiO2 contents on both the microstructures and properties of Ca-Ba- A1-B-Si-O glass/Al2O3 cotrtposites were investigated by FTIR, DSC, XRD and SEM. The experimental results show that increasing SiO2 content in the glass leads to the increase of [SIO4] units, increases the continuity of glass network, and decreases the trend to crystallization of composites. The shrinkage of samples rises rapid around the glass softening temperature and the final shrinkage of samples decreases with increasing SiO2 content in the glass. Borosilicate glass/Al2O3 composites with 60wt% SiO2 sintered at 875 ℃ for 15 min show better properties: a bulk density of 3.10 g,cm-3, a porosity of 0.23 %, a er value of 7.55 and a tan 8 value of 0.00053 (measured at 10 MHz) and a well matching with Ag electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号