首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Variable pump driving variable motor (VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle (UGV). VPDVM is a dual-input single-output nonlinear system with coupling, which is difficult to control High pressure automatic variables bang-bang (HABB) was proposed to achieve the desired motor speed. First, the VPDVM nonlinear mathematic model was introduced, then linearized by feedback linearization theory, and the zero-dynamic stability was proved. The HABB control algorithm was proposed for VPDVM, in which the variable motor was controlled by high pressure automatic variables (HA) and the variable pump was controlled by bang-bang. Finally, simulation of VPDVM controlled by HABB was developed. Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed, load and pump speed.  相似文献   

2.
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle (AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances. The longitudinal dynamic model for the flexible AHV was used for the control development. High-gain observers were designed to compensate for the system uncertainties and additive disturbances. Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system. Locally uniformly ultimately bounded tracking of the vehicle's velocity, altitude and attack angle were achieved under aeroelastic effects, system parametric uncertainties and unknown additive disturbances. Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design. The simulation results demonstrate that the tracking errors stay in a small region around zero.  相似文献   

3.
4.
Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.  相似文献   

5.
A novel approach was proposed to allocate spinning reserve for dynamic economic dispatch.The proposed approach set up a two-stage stochastic programming model to allocate reserve.The model was solved using a decomposed algorithm based on Benders' decomposition.The model and the algorithm were applied to a simple 3-node system and an actual 445-node system for verification,respectively.Test results show that the model can save 84.5 US $ cost for the testing three-node system,and the algorithm can solve the model for 445-node system within 5 min.The test results also illustrate that the proposed approach is efficient and suitable for large system calculation.  相似文献   

6.
To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincare section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.  相似文献   

7.
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.  相似文献   

8.
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel, based on the nonlinear adaptive optimal control (NAOC). A nonlinear 4-DOF model was initially developed, then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers. Then a simplified model was developed for steering system. The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions. Moreover, the hardware in the loop method was implemented to prove the controller ability in realistic conditions. Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.  相似文献   

9.
The problem of guaranteed cost control for the networked control systems (NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.  相似文献   

10.
The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine (SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.  相似文献   

11.
对于输入受约束的不确定时滞系统,提出了离散不确定时滞系统的鲁棒模型预测控制,用 LMI 解决时滞系统的输入受约束控制,给出了新的鲁棒性能指标上界和系统稳定的充分条件,通过求解 LMI 凸优化获得状态反馈控制律,仿真验证了该方法的有效性.结果表明,基于 LMI 约束不确定时滞系统的鲁棒模型预测控制易于求解,适于实际应用.本方法还可以推广到其他时滞系统模型中.  相似文献   

12.
离散不确定时滞系统的鲁棒模型预测控制   总被引:1,自引:0,他引:1  
对于输入受约束的不确定时滞系统,提出了离散不确定时滞系统的鲁棒模型预测控制,用LMI解决时滞系统的输入受约束控制,给出了新的鲁棒性能指标上界和系统稳定的充分条件,通过求解LMI凸优化获得状态反馈控制律,仿真验证了该方法的有效性.结果表明,基于LMI约束不确定时滞系统的鲁棒模型预测控制易于求解,适于实际应用.本方法还可以推广到其他时滞系统模型中.  相似文献   

13.
讨论了非线性时变时滞奇异系统的保性能控制问题,对于带有时变时滞的非线性奇异系统,给出了设计一个状态反馈控制律使得闭环系统是渐进稳定的且闭环系统的性能函数值不大于给定的一个数的充分条件;并利用线性不等式(LMI)给出了设计最优状态反馈控制律的方法,通过一个算例说明此方法的可行性.  相似文献   

14.
针对不确定广义系统非脆弱混合H2/H∞优化控制问题,对控制器增益具有加法式摄动和乘法式摄动两种情形采用线性矩阵不等式方法研究其充分条件,并设计满足要求的鲁棒非脆弱混合H2/H∞状态反馈控制器,使得闭合系统在满足H∞性能的前提下极小化H2范数的上界。  相似文献   

15.
针对多变量非线性系统提出了一种带约束输入的广义预测控制(GPC)算法.首先对多变量非线性系统建立T-S模糊模型,利用模糊聚类算法和正交最小二乘算法对输入变量的模糊划分及后件部分的参数分别进行辨识,然后在每个采样点对系统进行局部动态线性化.根据得到的系统线性化模型设计GPC算法,该算法充分考虑了控制输入及其增量受约束的情况,而且不必求D iophantine方程,大大减小了计算量.仿真结果表明该算法能保证系统输出有效跟踪设定值,而且控制输入和控制增量均在其约束范围之内.  相似文献   

16.
基于LMI方法,对离散广义时滞系统的鲁棒H2控制问题及鲁棒H∞控制问题进行了研究,寻找一个可容许的控制器使得闭环系统是容许的且H2性能指标的上界达到最小,及H∞范数小于一个给定的常数。  相似文献   

17.
现有的一类具有凸多面体不确定随机时滞系统鲁棒镇定条件存在较大保守性,为此,研究了一类具有凸多面体不确定性随机时滞系统参数依赖鲁棒镇定问题。利用Lyapunov随机稳定理论和构造参数依赖的Lya—punov函数,以线性矩阵不等式(LMIs:LinearMatrixInequalities)的形式给出一类具有凸多面体不确定性随机时滞系统参数依赖鲁棒镇定的充分条件。并通过数值例子说明了该方法计算过程简单,结论精确,适用于工程中结果的有效性。  相似文献   

18.
通过引入附加的松弛矩阵变量,给出了新的线性凸多面体不确定离散系统的鲁棒稳定条件。  相似文献   

19.
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.  相似文献   

20.
通过引入附加的松弛矩阵变量,以及构造参数依赖Lyapunov函数,给出了新的线性凸多面体不确定连续系统的鲁棒稳定条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号