首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved. Meanwhile, it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation, as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst. This causes the increased concentration in the froth compared to the bulk concentration, named as frother partitioning. Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known. There currently exists no such a topic aiming to link these two key parameters. To fill this vacancy, the correspondence between bubble size and frother partitioning was examined. Bubble size was measured by sampling-for-imaging (SFI) technique. Using total organic carbon (TOC) analysis to measure the frother partitioning between froth and bulk phases was determined. Measurements have shown, with no exceptions including four different frothers, higher frother concentration is in the bulk than in the froth. The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two, represented byCFroth/CBulk andD32. TheCFroth/CBulk andD32 curves show similar exponential decay relationships as a function of added frother in the system, strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.  相似文献   

2.
Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated. To evaluate the performance of a frother, an apparatus to measure the bubble size is a basic necessity. McGill Bubble Size Analyzer (MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose. Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber. Results show that there is no difference in Sauter mean (D32) when tap or de-ionized water was used instead of process water. However, the frother concentration, in this research DowFroth 250 (DF250), inside the chamber exhibited a pronounced effect on bubble size. Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications. It was also noted that the frother concentration which has been so far practiced in plant measurements (CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.  相似文献   

3.
The specific results of the work investigating the effect of gas density and water temperature on bubble size were present.These were surrogate variables designed to investigate the effect of viscosity(varying water temperature) and altitude(varying gas density).The results show that there is a measurable but relatively small effect of gas density on bubble size.The D32 is revealed to increase proportionally as(ρ0/ρg)0.132.The projected impact on flotation kinetics at 4500 m versus sea level is small,of the order of 0.5% recovery loss for a bank of eight flotation cells.The effect of water temperature(4-40 °C) on bubble size is more significant than gas density.The relationship correlates with water viscosity values quite closely.A finding that D32 increases proportionally as(μ/μ20)0.776 highlights the importance of accounting for viscosity effects if,for example,large process temperature fluctuations or deviation from design/test conditions are expected.  相似文献   

4.
A special experiment setup was designed to observe the interaction between bubbles and particle in flotation cell and to analyze the bubble characteristics such as bubble size, distribution and bubble-loading efficiency. Bubbles in water-gas system and three-phase system were measured. The results indicate that with the current setup the bubbles as small as 10μm can be easily distinguished. The average size of the bubbles generated under the given conditions in two-phase system is 410μm at frother concentration of 0. 004%, which is in good correspondence with the results of other works. The effect of frother on bubble size was probed. Increasing frother concentration from 0 to 0. 004% causes a reduction of bubble size from 700 to 400μm. The bubble loading efficiency was reported. The result indicates that the fine particle is more easily entrapped than the coarse particle. Some factors, which have effect on measurement accuracy were discussed. The aeration speed has a significant effect on the accuracy of results, if it surpasses 30 mL/s, and the image becomes unclear due to the entrapment of fine particle. Another factor, which can affect observing results, is the sampling position. At a wrong sampling position, the images become unclear.  相似文献   

5.
This work aims at selecting optimal operating variables to obtain the minimum specific energy (SE) in sawing of rocks. A particular granite was sampled and sawn by a fully automated circular diamond sawblades. The peripheral speed, the traverse speed, the cut depth and the flow rate of cooling fluid were selected as the operating variables. Taguchi approach was adopted as a statistical design of experimental technique for optimization studies. The results were evaluated based on the analysis of variance and signal-to-noise ratio (S/N ratio). Statistically significant operating variables and their percentage contribution to the process were also determined. Additionally, a statistical model was developed to demonstrate the relationship between SE and operating variables using regression analysis and the model was then verified. It was found that the optimal combination of operating variables for minimum SE is the peripheral speed of 25 m/s, the traverse speed of 70 cm/min, the cut depth of 2 cm and the flow rate of cooling fluid of 100 mL/s. The cut depth and traverse speed were statistically determined as the significant operating variables affecting the SE, respectively. Furthermore, the regression model results reveal that the predictive model has a high applicability for practical applications.  相似文献   

6.
Froth flotation is a widely used process of particle separation exploiting differences in surface properties. It is important to point out that overall flotation performance(grade and recovery) is a consequence of the quality and quantity of the solid particles collected from the pulp phase, transported into the froth phase, and surviving as bubble-particle aggregates into the overflow. This work will focus on studying these phenomena and will incorporate the effects of particle hydrophobicities in the 3-phase system. Solids are classed as either hydrophilic non-sulphide gangue(e.g. silica, talc), hydrophilic sulphide(e.g. pyrite), or hydrophobic sulphide(e.g. sphalerite). Talc is a surface-active species of gangue that has been shown to behave differently from silica(frother adsorbs on the surface of talc particles). Both are common components of ores and will be studied in detail. The focus of this work is to investigate the role of solids on pulp hydrodynamics, froth bubble coalescence intensity, water overflow rate with solids present, and in particular, the interactions between solids, frother and gas on the gas dispersion parameters. The results show that in the pulp zone there is no effect of solids on bubble size and gas holdup; in the froth zone, although hydrophilic particles solely do not effect on the water overflow rate, hydrophobic particles produce higher intensity of rates on water overflow and bubble coalescence, and many be attributed to the water reattachment.  相似文献   

7.
The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.  相似文献   

8.
The bubble formation process at submerged orifices with different geometry is investigated in the preparation of aluminum foams by gas injection method.The bubble profile on a horizontal plate is calculated by quasi-static analysis through Laplace equation.The bubble formation process is then distinguished into three stages:nucleation stage,growth stage and detachment stage in wetting and less wetting conditions based on the force balance analysis.In addition,the bubble size at high Reynolds number is obtained by considering the contribution of buoyancy,pressure force,inertial force,drag force and surface tension based on the three stages of bubble formation.The bubble size is confirmed to be sensitive to the equivalent contact angle,which consists of two terms including the contact angle and the wedge angle.Therefore,the wedge angle is introduced in the design of gas outlet orifices for the purpose of decreasing bubble size generated.The experimental study is conducted at three different types of stainless steel orifices under constant gas flow rates(0.05–2 L/min).It is clarified that the orifice geometry and the orifice size are both responsible for the cell size of aluminum foams.The experimental results for three different types of orifices show a consistent trend with the theoretical predictions at various gas flow rates.In the design of orifices to generate small bubbles in the melt,the wedge angle that coordinates with the contact angle is thus suggested.  相似文献   

9.
Behaviors of the quasi-steady state grain size distribution and the corresponding topological relationship were investigated using the Potts Monte Carlo method to simulate the normal grain growth process. The observed quasi-steady state grain size distribution can be well fit by the Weibull function rather than the Hillert distribution. It is also found that the grain size and average number of grain sides are not linearly related. The reason that the quasi-steady state grain size distribution deviates from the Hillert distribution may contribute to the nonlinearity of the relation of the average number of grain sides with the grain size. The results also exhibit the reasonability of the relationship deduced by Mullins between the grain size distribution and the average number of grain sides.  相似文献   

10.
Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem.  相似文献   

11.
Nanostructured Fe-doped titanium dioxide was synthesized from titanium containing electric furnace molten slag (TCEFMS) by using an alkali fusion, followed by a hydrolyzation-acidolysis-cMcination route. The effects of Mkali/slag mass ratio, calcinating temperature, calcinating time, and water/slag mass ratio on the extraction efficiency and purity of products were systematically studied in this paper. It is indicated that the best extraction efficiency of nanostructured Fe- doped titanium dioxide is 99.35%, when the molten slag is calcinated at 700℃ for 1 h with the mass ratio of alkali/molten slag of 1.5:1. The influence of alkali/slag mass ratio on the photocatalytic activity of final products was evaluated by the photodegradation of methyl blue under visible light irradiation. A maximum photodegradation efficiency of 88.12% over 30 min was achieved under the optimum conditions.  相似文献   

12.
This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.  相似文献   

13.
The microstructure and mechanical properties of A1-4.5wt% Cu Mloy reinforced with different volume fractions (1.5vo1%, 3vo1%, and 5vo1%) of alumina nanoparticles, fabricated using stir casting method, were investigated. CMculated amounts of alumina nanoparticles (about ~50 nm in size) were ball-milled with aluminum powders in a planetary ball mill for 5 h, and then the packets of milled powders were incorporated into molten Al-4.5wt% Cu alloy. Microstructural studies of the nanocomposites reveal a uniform distribution of alumina nanoparticles in the A1-4.5wt% Cu matrix. The results indicate an outstanding improvement in compression strength and hardness due to the effect of nanoparticle addition. The aging behavior of the composite is also evaluated, indicating that the addition of alumina nanoparticles can accelerate the aging process of the Mloy, resulting in higher peak hardness values.  相似文献   

14.
To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.  相似文献   

15.
S.  O.  Bamaga  M.  Md.  Tahir  T.  C.  Tan S. Mohammad  N.  Yahya  A.  L.  Saleh M. Mustaffar  M.  H.  Osman  A.  B.  A.  Rahman 《中南工业大学学报(英文版)》2013,(12):3689-3696
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.  相似文献   

16.
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control (SLCC) scheme and diagonal dominance control (DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC (OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.  相似文献   

17.
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.  相似文献   

18.
This study described the structural, dielectric, and piezoelectric behavior of Pb1-xSrx[(Zr0.52Ti0.48)0.95(Mn1/3Nb2/3)0.05]O3 ceramics (PSZT-PMN, x=0, 0.025, 0.050, and 0.075), prepared by a semi-wet route. X-ray diffraction, dielectric, and piezoelectric investigations were carried out to analyze the crystal structure. The relative dielectric constant and dielectric loss were both calculated as the functions of temperature. The room-temperature dielectric constant reaches a maximum for a Sr2+-modified PZT-PMN ceramic with an x value of 0.050, which corresponds to the morphotropic phase boundary (MPB). Raman spectroscopy studies also confirm the existence of this MPB for x=0.050. The piezoelectric strain coefficients (d33) value shows a maximum response for this composition. In addition, the phase transition temperature decreases significantly when the Sr2+concentration increases in the PZT-PMN ceramics.  相似文献   

19.
The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400- 900℃. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号