首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.  相似文献   

2.
Aviation kerosene is commonly used in combustion and regenerative engine cooling processes in propulsion and power-generation systems,including rocket,scramjet,and advanced gas turbine engines.In this paper,many surrogate models proposed in the open literature are examined for their applicability and accuracy in calculating thermodynamic and transport properties of the China aviation kerosene RP-3 at supercritical pressures,based on the extended corresponding-states methods.The enthalpy change from endothermic decomposition and low heating value from combustion of the jet fuel are also evaluated.Results from a number of simple and representative surrogate models,which contain species components ranging from 1 to10,are analyzed in detail.Data analyses indicate that a surrogate model with four species is the best choice for thermophysical property calculations under the tested conditions,with fluid temperature up to 650 K at various supercritical pressures.The surrogate model is particularly accurate in predicting the pseudo-critical temperature of aviation kerosene RP-3 at a supercritical pressure.A simple surrogate model containing the n-decane species and a surrogate model containing 10 species are the other two acceptable options.The work conducted herein is of practical importance for theoretical analyses and numerical simulations of various physicochemical processes at engine operating conditions.  相似文献   

3.
The components of combustion chamber (cylinder head-cylinder liner-piston assembly-oil film) were taken as a coupled body.Based on the three-dimensional heat transfer numerical simulation of the coupled body,a coupled three-dimensional calculation model for in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupled method,which implements the coupled three-dimensional simulation of in-cylinder working process and the combustion chamber components.The model was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions:NOx.The results showed that the heat transfer space non-uniformity of combustion chamber components directly influences the formation of in-cylinder NOx.The main area being influenced was the accessory area on the wall,while the influence on the generation of NOx in the central area couold be omitted.  相似文献   

4.
Chemical looping combustion of coal in interconnected fluidized beds   总被引:1,自引:0,他引:1  
Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.  相似文献   

5.
A forecasting model of the monthly crude oil price is investigated using the data between 1988 and 2009 from U. S. Energy Information Administration. First generalized auto-regressive condi- tional beteroskedasticity (GARCH) is applied to a state space model, a hybrid model (SS-GARCH) is proposed. Afterwards by computing a special likelihood function with two weak assumptions, model parameters are estimated by means of a faster algorithm. Based on the SS-GARCH model with the identified parameters, oil prices of next three months are forecasted by applying a Kalman filter. Through comparing the results between the SS-GARCH model and an econometric structure model, the SS-GARCH method is shown that it improves the forecasting accuracy by decreasing the index of mean absolute error ( RMSE ) from 7. 09 to 2.99, and also decreasing the index of MAE from 3. 83 to 1.69. The results indicate that the SS-GARCH model can play a useful role in forecasting short-term crude oil prices.  相似文献   

6.
In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion, thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.  相似文献   

7.
The application of hybrid vehicle is a practical technical solution to the energy shortage and the environmental pollution.The internal combustion engine(ICE)plays a key role in the development of the hybrid vehicle.Based on the requirements of the hybrid vehicle and the characteristic of Atkinson cycle,a set of designing methods for the Atkinson cycle gasoline engine is presented through the analysis of the optimized matching for the compression ratio,valve timing and the combustion chamber.The designing method has been verified by the bench test and the results show that the fuel consumption can be improved by12%–15%with the reduction of the low speed torque by 10%,and the low fuel consumption region in the fuel map extends significantly with the rated power almost keeping constant.It may be of great reference for the development of hybrid vehicle technology in China.  相似文献   

8.
The combustion processes of homogeneous charge compression ignition(HCCI)engines whose piston surfaces have been coated with catalyst(rhodium or platinum)were numerically investigated.A single-zone model and a multi-zone model were developed.The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model.The results showed that the ignition timing of the HCCI engine was advanced by the catalysis.The effects of catalytic combustion on HC,CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model.The results showed that the emissions of HC and CO(using platinum(Pt)as catalyst)were decreased,while the emissions of NOx were elevated by catalytic combustion.Compared with catalyst Pt,the HC emissions were lower with catalyst rhodium(Rh)on the piston surface,but the emissions of NOx and CO were higher.  相似文献   

9.
With increasingly stringent emission regulations and demand for fuel economy by the public,the combustion and emission problems of automotive diesel engines during transient operation have become vital and urgent issues.In this study,combustion deterioration has been experimentally analyzed using a heavy-duty turbocharged diesel engine running under transient conditions(constant speed and increasing torque).Optimization of the transient combustion process was performed by adjusting the fuel injection parameters.The results indicated that the notable combustion deterioration relative to steady state operation while transient was a function of the delay in the air-supply to the turbocharged engine,and took the form of combustion phasing delay,resulting in rapidly increasing smoke emission and fuel consumption.However,the delay in combustion phasing can be controlled by advancing the fuel injection timing,effectively increasing thermal efficiency.Unfortunately,smoke and NO x emissions increased at the same time.The deterioration in combustion phasing can also be improved by increasing injection pressure,resulting in decreased smoke emission while NO x emission increased.It is worth noting that the effective thermal efficiency first increased and then decreased as fuel injection pressure increased during transient operation.  相似文献   

10.
Dual-well steam assisted gravity drainage(SAGD) has significant potential for extra-heavy oil recovery.China is conducting two dual-well SAGD pilot projects in the Fengcheng extra-heavy oil reservoir.Quick,direct predictions of the oil production rate by algebraic models rather than complex numerical models are of great importance for designing and adjusting the SAGD operations.A low-pressure scaled physical simulation was previously used to develop two separate theoretical models corresponding to the two different growth stages observed in the SAGD steam chambers,which are the steam chamber rising stage and the steam chamber spreading stage.A high-pressure scaled model experiment is presented here for one dual-well SAGD pattern to further improve the prediction models to reasonably predict oil production rates for full production.Parameters that significantly affect the oil recovery during SAGD were scaled for the model size based on the reservoir characteristics of the Fengcheng reservoir in China.Experimental results show the relationship between the evolution of the steam chamber and the oil production rate during the entire production stage.High-pressure scaled model test was used to improve the gravity drainage models by modifying empirical factors for the rising model and the depletion model.A new division of the SAGD production regime was developed based on the relationship between the oil production rate and the evolution of steam chamber.A method was developed to couple the rising and depletion models to predict oil production rates during the SAGD production,especially during the transition period.The method was validated with experiment data and field data from the literature.The model was then used to predict the oil production rate in the Fengcheng reservoir in China and the Athabasca reservoir in Canada.  相似文献   

11.
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control (SLCC) scheme and diagonal dominance control (DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC (OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.  相似文献   

12.
Nanostructured Fe-doped titanium dioxide was synthesized from titanium containing electric furnace molten slag (TCEFMS) by using an alkali fusion, followed by a hydrolyzation-acidolysis-cMcination route. The effects of Mkali/slag mass ratio, calcinating temperature, calcinating time, and water/slag mass ratio on the extraction efficiency and purity of products were systematically studied in this paper. It is indicated that the best extraction efficiency of nanostructured Fe- doped titanium dioxide is 99.35%, when the molten slag is calcinated at 700℃ for 1 h with the mass ratio of alkali/molten slag of 1.5:1. The influence of alkali/slag mass ratio on the photocatalytic activity of final products was evaluated by the photodegradation of methyl blue under visible light irradiation. A maximum photodegradation efficiency of 88.12% over 30 min was achieved under the optimum conditions.  相似文献   

13.
The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa.  相似文献   

14.
This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.  相似文献   

15.
An integrated evaluation system under randomness and fuzziness was developed in this work to systematically assess the risk of groundwater contamination in a little town, Central China. In this system, randomness of the parameters and the fuzziness of the risk were considered simultaneously, and the exceeding standard probability of contamination and human health risk due to the contamination were integrated. The contamination risk was defined as a combination of "vulnerability" and "hazard". To calculate the value of "vulnerability", pollutant concentration was simulated by MODFLOW with random input variables and a new modified health risk assessment (MRA) model was established to analyze the level of "hazard". The limit concentration based on environmental-guideline and health risk due to manganese were systematically examined to obtain the general risk levels through a fuzzy rule base. The "vulnerability" and "hazard" were divided into five categories of "high", "medium-high", "medium", "low-medium" and "low", respectively. Then, "vulnerability" and "hazard" were firstly combined by integrated evaluation. Compared with the other two scenarios under deterministic methods, the risk obtained in the proposed system is higher. This research illustrated that ignoring of uncertainties in evaluation process might underestimate the risk level.  相似文献   

16.
A physically based analytical model was developed to predict the performance of the plateau observed in the gate C-V characteristics of strained-Si/SiGe pMOSFET.Experimental results were used to validate this model.The extracted parameters from our model were tox=20 nm,ND=1×1016 cm-3,tssi=13.2 nm,consistent with the experimental values.The results show that the simulation results agree with experimental data well.It is found that the plateau can be strongly affected by doping concentration,strained-Si layer thickness and mass fraction of Ge in the SiGe layer.The model has been implemented in the software for strained silicon MOSFET parameter extraction,and has great value in the design of the strained-Si/SiGe devices.  相似文献   

17.
This article reports the extraction of zirconium (IV) from aqueous HC1 solution by tri-octyl amine (TOA), Cyanex 921, and their binary mixture using kerosene as the diluent. The effect of some parameters on the extraction of Zr(IV) was investigated such as equilibration time, aqueous phase acidity, extractant molarity, chloride ion concentration, nature of diluents, and temperature. The extraction of Zr(IV) was found to be 99% from 7.5 M HC1 using the mixture of extractants containing 0.1 M TOA and 0.02 M Cyanex 921 in kerosene. Kerosene was found to be the effective diluent for the extraction of Zr(IV) with the binary mixture of TOA and Cyanex 921. The positive enthalpy change and positive entropy change in the binary extraction system show the endothermic process with an increase in entropy. Stripping of Zr(IV) from the loaded organic phase containing the mixture of TOA (0.1 M) and Cyanex 921 (0.02 M) indicates that HNO3 and Na2CO3 are the best stripping agents.  相似文献   

18.
Microstructure and electrical properties of La2O3-doped ZnO-Bi2O3 thin films prepared by sol-gel process have been investigated. X-ray diffraction shows that most diffraction peaks of ZnO are equal, and the crystals of ZnO grow well. Scanning electron microscopy and atomic force microscopy results indicate that the samples have a good structure and lower surface roughness. The nonlinear V-I characteristics of the films show that La2O3 develops the electrical properties largely and the best doped content is 0.3% lanthanum ion, with the leakage current of 0.25 mA, the threshold field of 150 V/mm and the nonlinear coefficient of 4.0 in detail.  相似文献   

19.
The microstructure and mechanical properties of A1-4.5wt% Cu Mloy reinforced with different volume fractions (1.5vo1%, 3vo1%, and 5vo1%) of alumina nanoparticles, fabricated using stir casting method, were investigated. CMculated amounts of alumina nanoparticles (about ~50 nm in size) were ball-milled with aluminum powders in a planetary ball mill for 5 h, and then the packets of milled powders were incorporated into molten Al-4.5wt% Cu alloy. Microstructural studies of the nanocomposites reveal a uniform distribution of alumina nanoparticles in the A1-4.5wt% Cu matrix. The results indicate an outstanding improvement in compression strength and hardness due to the effect of nanoparticle addition. The aging behavior of the composite is also evaluated, indicating that the addition of alumina nanoparticles can accelerate the aging process of the Mloy, resulting in higher peak hardness values.  相似文献   

20.
To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号