首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The final machining (or finishing) of precision parts with high level of surface finish and close tolerance is making the application of magnetic abrasive finishing technology increasingly important. Magnetic abrasive flow finishing (MAFF) is a new abrasive finishing process combining the features of abrasive flow finishing (AFF) and magnetic abrasive finishing (MAF). MAFF provides a high level of surface finish and close tolerances for wide range of industrial application. This paper focuses on the modeling and simulation for the prediction of surface roughness on the workpiece surface finished by MAFF process. A finite element model is developed to find the magnetic potential distribution in the magnetic abrasive brush formed during finishing action and then it is used to evaluate machining pressure, surface finish and material removal. The simulation results are compared with the experimental results available in the literature. The simulated workpiece surface roughness shows features similar in nature to the experimental results.  相似文献   

2.
In this research, the finishing characteristics in a tube's internal finishing process using the method of magnetic abrasive finishing (MAF) combined with electrolysis has been studied. Electrolysis produces an aluminium oxide film that accelerates the removal of the initial hairline morphology on the surface. Subsequently, the film is removed with MAF. This process significantly minimises the surface roughness in a reduced time. The way the finishing conditions, such as the pole–pipe gap, iron particle size and abrasiveness combinations, and processing time affected the surface morphology in the MAF machining process has been particularly examined. The surface roughness was measured and images of the finished surfaces were recorded to study the morphology changes. Prolonged electrolysis finishing was seen to deepen the oxidation film and pits, which adversely affects the surface. This evidence suggests that the pit residuals contribute to higher surface roughness values.  相似文献   

3.
Electrolytic magnetic abrasive finishing (EMAF) is a compound finishing process, involving traditional magnetic abrasive finishing (MAF) and an electrolytic process. The aim of including the electrolytic process into the EMAF system is to produce a passive film (or oxide film), which is much easier to remove than the original metal surface during processing. Moreover, in the presence of both electric and magnetic fields, the negatively charged ions move toward the anode surface along a cycloid curve by the action of the Lorentz force. Under appropriate operating conditions, this phenomenon promotes electrolytic effects, resulting in a further increase in finishing efficiency, yielding a superior surface. This study describes the principles of the process, the finishing characteristics of surface roughness and material removal, and the associated mechanisms. Experimental results show that the EMAF process yields quite excellent finishing characteristics, better than those obtained by MAF, especially with a high electrolytic current. The process parameters such as electrolytic current, electrode gap, magnetic flux density, and rate of workpiece revolution must be appropriately fitted to obtain a superior refined surface with high efficiency.  相似文献   

4.
钛合金管内表面的电化学磁力研磨复合光整试验   总被引:4,自引:0,他引:4  
针对热挤压成型对钛合金管的内表面会产生微裂纹、褶皱、毛刺等表面缺陷的问题,提出了一种高效率的电化学磁力研磨复合光整加工方法。设计了电化学磁力研磨复合光整加工的实验装置,分别与纯磁力研磨加工和纯电化学加工进行了光整加工试验对比,检测分析了不同工艺加工前后表面的粗糙度、微观形貌、摩擦磨损行为、表面残余应力和能量谱。结果表明:在相同的加工时间内,与单纯电化学加工和磁力研磨加工相比,电化学磁力研磨复合光整加工的表面粗糙度Ra可达到0.2μm,材料去除量和加工效率显著提高;表面显微形貌要明显优于其他两种加工方式;且加工后表面很好地维持了原有材料的化学成分和表面性质;能够使表面由拉应力转变为约–200 MPa的压应力状态,从而获得更好的表面应力状态。  相似文献   

5.
Ultrasonic assisted magnetic abrasive finishing (UAMAF) integrates the use of ultrasonic vibrations and magnetic abrasive finishing (MAF) process to finish surfaces to nanometer order in a relatively short time. The present study emphasizes on the fabrication of UAMAF setup. Using this experimental setup, experimental studies have been carried out with respect to five important process parameters namely supply voltage, abrasive mesh number, rotation of magnet, abrasive weight percentage, and pulse on time (Ton) of ultrasonic vibrations selected based on literature available in the area of MAF process and ultrasonic generator controls. Percentage change in surface roughness (?Ra) for AISI 52100 steel workpiece has been considered as response and unbonded SiC abrasives are used in the work. The experimental results showed that the UAMAF process has better finishing potential as compared to those obtainable by using MAF process for similar processing conditions. The surface roughness value obtained by UAMAF was as low as 22 nm within 80 s on hardened AISI 52100 steel workpiece using unbonded SiC abrasives. Scanning electron microscopy and atomic force microscopy studies were carried out to feel the surface texture produced and to identify finishing mechanism.  相似文献   

6.
This paper describes the modification of surface roughness and lay of cobalt chromium alloy femoral knee components by magnetic abrasive finishing (MAF), including clarification of the MAF surface-processing mechanisms. The MAF process creates characteristic surfaces by micro-cutting of abrasive pressed by magnetic particles that nearly conform to the surface, removing large asperities and creating microasperities compared to hand-buffed surfaces. The process enables smoothing the surface on the nanometer scale with critical control of surface lay (e.g., crosshatch angle), altering the contact angle of water by a combination of kinematic behavior of magnetic particles over the freeform condyle surface.  相似文献   

7.
Study the characteristics of magnetic finishing with gel abrasive   总被引:1,自引:0,他引:1  
Given the flexible polishing effect in magnetic abrasive finishing (MAF), the precise and mirrorlike surface can be obtained during this process. However, the abrasives are easily flown away from the working area regardless of what abrasives are used in MAF; this situation will reduce the polished efficiency and induce the pollution problem in the environment. Besides, the abrasives cannot recycle after the finishing process. Therefore, a novel abrasive medium, using the silicone gel to mix the ferromagnetic particles and abrasive, was developed to enhance the disadvantages in MAF. Magnetic finishing with gel abrasive (MFGA) was utilized in this study to polish the cylindrical rod of mold steel; furthermore, this cylindrical rod was fixed in a horizontal chuck that could rotate and vibrate in the axial direction. This study focused on the finishing efficiencies and the surface roughness of the workpieces after MFGA. Moreover, recycling times of gel abrasive were also the main effects that need to be approved. The results demonstrated that surface roughness of the cylinder part was reduced to 0.1 μm Ra from an initial value of 0.677 μm Ra within 10 min, and surface roughness could decrease to 0.038 μm Ra after 30 min in MFGA. Surface roughness reduction in MFGA was 3 times of surface roughness reduction in MAF using the unbonded magnetic abrasive as medium. Roughness improvement rate still remained at a high level of 90% when the same abrasive medium (35 g) was used 15 times to finish 15 workpieces; therefore, this result proved that the gel abrasive had excellent ability for recycling.  相似文献   

8.
The belt finishing process is a recent manufacturing technique in the field of superfinishing of hard material. Belt finishing leads to an homogenous surface with a very smooth surface roughness and good bearing curve parameters. In this way, belt finishing can complement effectively hard turning, whose disability is the shifting of the surface quality due to tool flank wear. In order to study the effect and the interaction of lubrications conditions on belt finishing after hard turning, an experimental study is proposed. The interaction between lubrications conditions and belt feed and the effect on roughness parameters has been investigated. It was shown that minimum quantity lubrication with low belt feed is the best way to have the optimal roughness characteristics. Under these conditions, the process is not a basic belt finishing operation but a combination of belt finishing and lapping due to the presence of a slurry made of free abrasive grains, microchips and oil, in the contact. Additionally, it has been revealed that dry belt finishing is not suitable because of the rapid destruction of abrasive grains.  相似文献   

9.
A new precision finishing process called magnetorheological abrasive flow finishing (MRAFF), which is basically a combination of abrasive flow machining (AFM) and magnetorheological finishing (MRF), has been developed for nano-finishing of parts even with complicated geometry for a wide range of industrial applications. This paper deals with the theoretical investigations into the mechanism of MRAFF process to study the effects of various process parameters. In the present work, an attempt has been made to analyze the medium flow through the fixture by finite difference method by assuming the medium as Bingham plastic to evaluate the stresses developed during the process. A capillary viscometer has been designed and fabricated to study the effect of magnetic field on the rheological properties of the medium. Microstructure of the mixture of ferromagnetic and abrasive particles in magnetorheological polishing fluid (MRPF) has been proposed, and normal force on the abrasive particles is calculated from the applied magnetic field. A model for the prediction of material removal and surface roughness has also been presented. Theoretical results compare well with the experimental data available in the literature.  相似文献   

10.
The process principle and the finishing characteristics of unbonded magnetic abrasive within cylindrical magnetic abrasive finishing are described in this study. The unbonded magnetic abrasive is a mechanical mixture of SiC abrasive and ferromagnetic particles with a SAE30 lubricant. Iron grit and steel grit, for which three various particle sizes were prepared for both, were used as ferromagnetic particles, each of them being mixed with 1.2 and 5.5 μm SiC abrasive, respectively. Also, the finishing characteristics on surface roughness and material removal as well as their mechanisms were investigated. Experimental results indicate that steel grit is more suitable for magnetic abrasive finishing because of its superior hardness and the polyhedron shape. The variations of material characteristics on the work surface both before and after finishing were also investigated. Si content was increased obviously, however its corrosion resistibility decreased on a surface that was finished via steel grit mixed with SiC abrasive.  相似文献   

11.
介绍了自由磨粒磁力研磨光整加工机理,在3_TPT五自由度并联机床上对模具型腔进行磁力研磨光整加工试验,研究了磁感应强度、研磨间隙、磨料粒度以及研具表面形状对模具型腔进行磁力研磨光整加工的影响及其变化规律。  相似文献   

12.
在分析内圆磁力研磨加工原理的基础上,通过建立适量的假设条件,简化了磁力研磨加工区域中的磁场,利用拉普拉斯方程及必要的边界条件推导出在磁场中圆柱腔内、外磁感应强度的近似关系,并对不同壁厚的45钢圆柱管进行对比试验,结果表明内圆磁力研磨加工只适合加工薄壁磁性材料圆管工件。  相似文献   

13.
ABSTRACT

Magnetic abrasive finishing (MAF) is an advanced precise finishing method that achieves micro-level to nano-level surface roughness. In industries, MAF is highly recommended where zero or negligible post-process surface defects are an obligatory requirement. In the same context, process optimisation is essential for making it commercially viable. This study presents an artificial neural network and genetic algorithm (ANN-GA), a robust modelling and optimisation tool (applicable to any sort of data set orthogonal array design or non-orthogonal array design) that is applied to scrutinise and improve the performance of the magnetic abrasive finishing of stainless steel SS302. In addition, the results from ANN-GA modelling and optimisation have been compared with conclusions drawn from conventionally used Taguchi-ANOVA analysis. An L27 non-orthogonal array design has been opted for as per machining set-up restriction. Abrasive size, voltage, machining gap, and rotational speed were the design variables considered in the present research work. It was found that the parametric design used in this study provides a straightforward, methodical, and proficient method of modelling and optimisation of change of surface roughness or finishing behaviour during the MAF process. Modelling and optimisation done with ANN-GA show a maximum value of (ΔR a)max equal to 0.256?µm, which is 7% better than the result obtained from Taguchi-ANOVA analysis.  相似文献   

14.
针对316L不锈钢细长管磁粒研磨加工过程中,最佳工艺参数难以选择,以及加工后对工件内表面粗糙度(Ra)的预测问题,将影响磁粒研磨316L不锈钢细长管内表面粗糙度的四个工艺参数作为输入值,内表面粗糙度作为输出值,构建粒子群(PSO)优化极限学习机(ELM)模型来预测316L不锈钢细长管内表面粗糙度,利用PSO对工艺参数进行全局寻优,获得最佳工艺参数组合,最后通过试验与预测结果进行对比。构建的PSO-ELM表面粗糙度预测模型拟合优度R2为0.984 8,绝对误差(MAE)为0.013 4,均方根误差(RMSE)为0.021 4。得到的最佳工艺参数组合为:主轴转速2 389.011r/min,进给速度3.167 mm/s,磨料粒径216.185μm,加工时间35.856 min,预测Ra为0.178μm。对工艺参数进行调整,试验得到的Ra为0.182μm,与预测值相比误差为2.24%。基于PSO-ELM方法构建316L不锈钢细长管内表面粗糙度预测模型,实现对工件内表面粗糙度的精确预测,应用粒子群方法得到最佳工艺参数组合,提高了磁粒研磨316L不锈钢细长管的加工效率。  相似文献   

15.
A new precision finishing process for complex internal geometries using smart magnetorheological polishing fluid is developed. Magnetorheological abrasive flow finishing (MRAFF) process provides better control over rheological properties of abrasive laden magnetorheological finishing medium. Magnetorheological (MR) polishing fluid comprises of carbonyl iron powder and silicon carbide abrasives dispersed in the viscoplastic base of grease and mineral oil; it exhibits change in rheological behaviour in presence of external magnetic field. This smart behaviour of MR-polishing fluid is utilized to precisely control the finishing forces, hence final surface finish. A hydraulically powered experimental setup is designed to study the process characteristics and performance. The setup consists of two MR-polishing fluid cylinders, two hydraulic actuators, electromagnet, fixture and supporting frame. Experiments were conducted on stainless steel workpieces at different magnetic field strength to observe its effect on final surface finish. No measurable change in surface roughness is observed after finishing at zero magnetic field. However, for the same number of cycles the roughness reduces gradually with the increase of magnetic field. This validates the role of rheological behaviour of magnetorheological polishing fluid in performing finishing action.  相似文献   

16.
管道、管件或器材连接处所使用的法兰盘在加工时因其内表面会产生微裂纹、褶皱等缺陷,导致使用寿命下降。用传统的抛光工艺难以实现对法兰盘管内表面的光整加工,使用磁力研磨加工工艺却可以很好地解决这一难题。通过对XK7136C数控铣床的主轴进行改造而成的研磨试验平台,其磁极主轴在给定数控程序的走刀路径下,带动侧面开槽的磁极进行转动,从而实现磁性磨粒对法兰盘管内表面光整加工的目的。对磁研磨法加工法兰盘管内表面的原理及磁性磨粒的受力情况进行了的分析,试验结果表明:法兰盘零件弯管内表面经过研磨后,原有的表面质量明显改善,表面粗糙度的值由3.46μm降低到1.18μm,验证了磁力研磨对法兰盘管内表面的光整加工效果良好。  相似文献   

17.
This paper deals with a finishing method for the internal face of a cooling channel located in an injection mold that makes use of free abrasive grains. The injection mold is fabricated by layered manufacturing equipment using a ferrous based metal powder. When the internal pressure is loaded to the hydraulic cylinder, the solution containing the free abrasive grains is passed through the cooling channel. The internal face is then finished by the free abrasive grains. The effects of various conditions on finishing characteristics are investigated experimentally. The results showed that the internal face roughness of the cooling channel improved significantly during the first 1000s of finishing. The significant improvement achieved during the initial stages of finishing is due to the removal of the aforementioned unstable powders. Free abrasive grains are employed to remove the unstable powder on the internal face rather than to polish the alloyed face. The high-speed flow of the free abrasive grains results in an increase in their kinetic energy, thereby increasing the force with which they collide with the internal face and resulting in an improvement of the surface roughness. The internal face finishing was effective for the improvement of the thermophysical properties in the cooling channel.  相似文献   

18.
Contents     
The attempts of researchers to obtain accurate and high-quality surfaces have led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF) is a relatively new type in which magnetic field is used to control the abrasive tools. Surfaces of moulds, for instance, are among those which require very high-surface smoothness. Usually, this type of part has freeform surfaces. In this study, the effect of magnetic abrasive process parameters on finishing freeform surfaces of aluminium parts has been examined. This method was achieved through a combination of the magnetic abrasive process and computer numerical control. The use of a simple hemisphere to be joined on the flat area of the magnet as well as spark machining for forming a sphere at the end of a magnet were performed during experimentation. Gap, rotational speed of the machining head, amount of abrasive powder and feed rate were among the parameters that were tested in experiments. The design of experiments is based on the response surface methodology. Significant parameters and the regression equations governing the process were also determined. The impact of intensity of the magnetic field was obtained using MAXWELL finite element software. In the MAF process, magnetic abrasives play the role of cutting tools. However, the magnetic abrasives are not easily available as these are produced by special techniques such as sintering method, adhesive based, plasma based or gel based. This study presents the basic polishing characteristics of the magnetic abrasives produced by the mechanical alloying process. After the mechanical alloying process fine magnetic abrasives are obtained, in which the abrasive particles adhere to the base metal matrix without any bonding material. In this study, investigation was performed only on the convex area of workpiece. Optimum parameters are gap size of 0.5?mm, feed rate of 10?mm?min?1 rotational speed of 2100?rev?min?1 and powder amount of 1.75?g. To help understand the effectiveness of the MAF process, scanning electron microscopy and atomic force microscopy of the machined surfaces have been carried out.  相似文献   

19.
反求工程在磁粒研磨技术中的应用   总被引:1,自引:0,他引:1  
对反求工程在磁力研磨中的应用给予了充分的论证,并找出了二者的结合点,解决了磁力研磨在复杂曲面加工中难以确定磁极运动轨迹的难题,该技术的完善对于实现模具型腔精加工的自动化具有重要的意义。  相似文献   

20.
磁粒研磨加工是一种应用广泛且高效的表面加工技术,具有加工质量高、适用范围广、柔性加工、自锐性好、易于实现自动化等优点,能够有效去除工件表面的划痕、积碳、毛刺和卷边等缺陷.首先,综述了磁粒研磨加工技术的发展与研究,包括磁粒研磨加工技术的提出与发展、数学模型分析和加工参数产生的影响,其中着重论述了加工过程中单颗磨粒的力学模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号