首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.  相似文献   

2.
Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by advanced remote methods. This structure is compliant to the evolving maintenance strategy of ITER. Initial results of a Failure Mode Effects and Criticality Analysis (FMECA) and a development risk analysis for the ITER upper port plug #3, housing the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, are employed for the definition of the maintenance strategy.The CXRS upper port plug is essentially an optical system which transfers visible light from the plasma into a fiber bundle. The most critical component in this path is the first mirror (M1) whose reflectivity degrades during operation due to deposition and/or erosion dominated effects. Amongst other measures to mitigate these effects, the strategy is to allow for a replacement of this mirror. Therefore it is mounted on a retractable central tube. The main purpose of this tube is to make frequent replacements possible without hindering operation. The maintenance method in terms of time, geometry and spare part policy has a large impact on cost of the system and time usage in the hot cell.Replacement of the tube under vacuum and magnetic field seems infeasible due to the operational risk involved. The preferred solution is to have a spare tube available which is replaced in parallel with other maintenance operations on the vessel, as to avoid any interference in the hot cell with the shutdown scheduling. This avoids having to refurbish a full port plug and also allows for a more frequent replacement of M1, as we can replace the mirror anytime the vacuum vessel is vented, estimated to be once a year.  相似文献   

3.
4.
5.
《Fusion Engineering and Design》2014,89(9-10):1969-1974
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of TBM PP with two dummy TBMs. Also analysis results are summarized to evaluate shielding, hydraulic, and thermal and structural performances of the TBM PP design.  相似文献   

6.
《Fusion Engineering and Design》2014,89(9-10):2320-2324
The conceptual design of several gripping tools and their mechanical interfaces is being carried out for the ITER ECH UPP within the WP10-GOTRH programme. EFDA finances the GOT RH (Goal Oriented Training Programme for Remote Handling). The purpose of this paper is to introduce new concepts of gripping tools for the plug extraction/insertion in the upper port of ITER. All these gripping tools are designed according to IO input data and geometrical constraints. The gripping tools have to be able to extract/insert the plug in the scenario of maximum misalignment between the plug and the tractor. The paper also defines the functional requirements the gripping tools need to comply with. The requirements and input data are verified and validated through 3D simulation with Catia mock-ups of the gripping tools. The strengths and weaknesses of each gripping tool model are compared.  相似文献   

7.
《Fusion Engineering and Design》2014,89(7-8):1009-1013
The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position.The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure.The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.  相似文献   

8.
Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures.This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure.The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.  相似文献   

9.
Transient electromagnetic (EM) analysis is presented focusing on main components of the ITER core charge exchange recombination spectroscopy (cCXRS) port plug developed by Forschungszentrum Jülich (FZJ), ITER-NL and UKAEA(CCFE) in 2009. The cCXRS primary function is to transfer the light in the visible part of spectra emitted by interaction of the plasma ions with a diagnostic neutral beam.The TYPHOON software package has been used for the EM analysis. The code is dedicated for simulation of transient electromagnetic processes using a shell approach in the integral–differential formulation to represent conducting structures with a set of multi-connected shells arbitrary located in a space. The advantage of the shell approach is a higher flexibility in modelling detailed structures as compared with widely used 3D models. On the other hand, the shell approach requires ultimate care in modelling relatively thick structures. These issues are discussed in the paper.Two vertical displacement events (VDE) which seem to result in the largest EM loads on the main cCXRS components have been agreed with FZJ and simulated. Transient electromagnetic processes caused by different sources have been considered separately, and then superimposed to obtain the total solution. Three types of transient processes for each type of VDE have been analyzed: (1) due to variations of a toroidal plasma current, shape and position and due to variations of poloidal field coils (PFC) and central solenoid (CS) currents, (2) due to variations of the Halo current and (3) due to variations of a toroidal magnetic flux of plasma. The analysis covers two options for electrical contact between the main shell (MS) of the port plug and the blanket shield module (BSM).The results are supposed to be used for benchmarking with independent 3D EM models developed for the upper port plug.  相似文献   

10.
11.
ITER上窗口屏蔽中子学分析研究   总被引:2,自引:2,他引:0  
利用CAD/MCNP自动建模程序MCAM建立ITER新上窗口中子学计算模型,使用中子/光子耦合输运程序MCNP/4CI、AEA聚变核数据库FENDL1.0和集成上窗口模型的ITER基本中子学模型计算并分析上窗口新的工程设计的屏蔽能力以检验设计的合理性。结果表明,与以前的上窗口设计相比,新设计的上窗口的周围剂量控制点的快中子注量率、停堆剂量率以及线圈核热等都增大了好几倍,建议进一步改进上窗口设计。  相似文献   

12.
To assess hydraulic connections between subcomponents of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, we investigated the laser welding and ablation cutting process, which can be applied to remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high-density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling. Furthermore the design of the hydraulic connection module has been updated to resolve some technical difficulties that were found during the test.  相似文献   

13.
The port-based ITER diagnostic systems are housed primarily in two locations, the equatorial and upper port plugs. The port plug structure provides confinement function, maintains ultra-high vacuum quality and the first confinement barrier for radioactive materials at the ports. The port plug structure design, from the ITER International Organisation (IO), is cooled and heated by pressurized water which flows through a series of gun-drilled water channels and water pipes. The cooling function is required to remove nuclear heating due to radiation during operation of ITER, while the heating function is intended to heat up uniformly the machine during baking condition. The work presented provides coupled thermo-hydraulic analysis and optimization of a Generic Equatorial Port Plug (GEPP) structure cooling and heating system. The optimization performed includes positioning, minimization of number and size of gun drilled channels, complying with the flow and functional requirements during operating and baking conditions.  相似文献   

14.
Unmitigated disruptions in ITER can produce strong localized surface damage on the first wall (FW). Massive gas injection (MGI) systems are being designed to dissipate a large fraction of the plasma stored energy at the disruption thermal quench (TQ) and hence reduce the consequences for FW components. The stored energies can be high enough, however, for there to be potential for the photon flash at the MGI TQ to drive local melting of beryllium FW components. To estimate the poloidal distribution of FW surface temperatures, the MGI process is being simulated using the 2D code TOKES, assuming toroidal symmetry. High pressure neon injection, assimilation and transport of injected impurities through the entire plasma volume are modelled. The output of these simulations is used by the melt motion code MEMOS to assess the resulting maximum surface temperature and the regimes with melting on the FW surface.  相似文献   

15.
The challenge of developing the conceptual design of the ECH Upper Launcher system for MHD control in the ITER plasmas has been tackled by team of European Associations together with the European Domestic Agency (“F4E”). The launcher system has to meet the following requirements: (a) a mm-wave system extending from the interface to the transmission line up to the target absorption zone in the plasma and performing as an intelligent antenna; (b) a structural system integrating the mm-wave system and ensuring sufficient thermal and nuclear shielding; (c) port plug remote handling and testing capability ensuring high port plug system availability. The paper describes the reference launcher design. The mm-wave system is composed of waveguide and quasi-optical sections with a front steering system. An automated feedback control system is developed as a concept based on an assimilation procedure between predicted and diagnosed absorption location. The structural system consists of the blanket shield module, the port plug frame, and the internal shield for appropriate neutron shielding towards the launcher back-end. The specific advantages of a double walled structure are discussed with respect to adequate baking, to rigidity towards launcher deflection under plasma-generated loads and to removal of thermal loads, including nuclear ones. Basic studies of remote handling (RH) to validate design development are initiated using a virtual reality simulation backed by experimental validation, for which a launcher handling test facility (LHT) is set up as a full scale experimental site allowing furthermore thermohydraulic studies with ITER blanket water parameters.  相似文献   

16.
This work describes the microwave design of the transmission line housed in the in-port-plug region of the ITER plasma position reflectometer(PPR). The design of the components of the inport-plug reflectometers(located in equatorial port-plug 10(EPP10) and in upper-port-plug 01(UPP01)) is presented. Using a 3 D ray tracing code, the spatial position and optimum orientation angles of each set of emission and detection antennas were determined. A feasible path was then created from the obtained antenna positions and orientations to the primary vacuum window.Oversized tall waveguides were chosen to reduce ohmic losses. Due to space constraints in the ITER crowded environment, bends in oversized waveguides were unavoidable, and thus mode conversion was produced. To keep mode conversion losses at bay, hyperbolic secant curvature bends had to be used whenever possible. However, E-plane bends in tall waveguides proved to be especially critical, making it necessary to employ other approaches when higher bending angles were needed. Mode conversion results were obtained by evaluating the mode coupling equations. Ohmic losses have also been computed and their results compared with commercial simulators, obtaining a perfect agreement.  相似文献   

17.
The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak.The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port.This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.  相似文献   

18.
The ITER plasma control system (PCS) will play a central role in enabling the experimental program to attempt to sustain DT plasmas with Q = 10 for several hundred seconds and also support research toward the development of steady-state operation in ITER. The PCS is now in the final phase of its conceptual design. The PCS relies on about 45 diagnostic systems to assess real-time plasma conditions and about 20 actuator systems for overall control of ITER plasmas. It will integrate algorithms required for active control of a wide range of plasma parameters with sophisticated event forecasting and handling functions, which will enable appropriate transitions to be implemented, in real-time, in response to plasma evolution or actuator constraints.In specifying the PCS conceptual design, it is essential to define requirements related to all phases of plasma operation, ranging from early (non-active) H/He plasmas through high fusion gain inductive plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture will be capable of satisfying the demands of the ITER research plan. The scope of the control functionality required of the PCS includes plasma equilibrium and density control commonly utilized in existing experiments, control of the plasma heat exhaust, control of a range of MHD instabilities (including mitigation of disruptions), and aspects such as control of the non-inductive current and the current profile required to maintain stable plasmas in steady-state scenarios. Control areas are often strongly coupled and the integrated control of the plasma to reach and sustain high plasma performance must apply multiple control functions simultaneously with a limited number of actuators. A sophisticated shared actuator management system is being designed to prioritize the goals that need to be controlled or weigh the algorithms and actuators in real-time according to dynamic control needs. The underlying architecture will be event-based so that many possible plasma or plant system events or faults could trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.  相似文献   

19.
ITER will be the world's largest magnetic confinement tokamak fusion device and is currently under construction in southern France. The ITER Plasma Control System (PCS) is a fundamental component of the ITER Control, Data Access and Communication system (CODAC). It will control the evolution of all plasma parameters that are necessary to operate ITER throughout all phases of the discharge. The design and implementation of the PCS poses a number of unique challenges. The timescales of phenomena to be controlled spans three orders of magnitude, ranging from a few milliseconds to seconds. Novel control schemes, which have not been implemented at present-day machines need to be developed, and control schemes that are only done as demonstration experiments today will have to become routine. In addition, advances in computing technology and available physics models make the implementation of real-time or faster-than-real-time predictive calculations to forecast and subsequently to avoid disruptions or undesired plasma regimes feasible. This requires the PCS design to be adaptable in real-time to the results of these forecasting algorithms. A further novel feature is a sophisticated event handling system, which provides a means to deal with plasma related events (such as MHD instabilities or L-H transitions) or component failure. Finally, the schedule for design and implementation poses another challenge. The beginning of ITER operation will be in late 2020, but the conceptual design activity of the PCS has already commenced as required by the on-going development of diagnostics and actuators in the domestic agencies and the need for integration and testing. This activity is presently underway as a collaboration of international experts and the results will be published as a subsequent publication. In this paper, an overview about the main areas of intervention of the plasma control system will be given as well as a summary of the interfaces and the integration into ITER CODAC (networks, other applications, etc.). The limited amount of commissioning time foreseen for plasma control will make extensive testing and validation necessary. This should be done in an environment that is as close to the PCS version running the machine as possible. Furthermore, the integration with an Integrated Modeling Framework will lead to a versatile tool that can also be employed for pulse validation, control system development and testing as well as the development and validation of physics models. An overview of the requirements and possible structure of such an environment will also be presented.  相似文献   

20.
To understand the combined effect of plasma heating and neutron heating loadings, the distributions of temperature, stress, and strain in different two-dimensional first wall panel models under normal ITER operation condition were simulated using finite element method. The maximum temperature occurs at the Be armor, and reaches 461 °C. High thermal stresses (in the range of 80-200 MPa) are found at the interface between the Be armor and the CuCrZr layer. The maximum thermal stress reaches 324 MPa in the SS316L cooling tube (20 mm diameter), exceeding its yield strength and resulting in a maximum strain of about 1.7% at the tube inner surface. These simulation results are useful for the design and operation of ITER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号