首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an environmentally friendly disposable heavy metal ion sensor for in situ and online monitoring in the nature and physiological systems. The miniaturized sensor chip consists of a non-toxic microfabricated bismuth (Bi) working electrode that replaces the conventional mercury electrodes, an integrated Ag/AgCl reference electrode, a gold counter electrode, and microfluidic channels. In this work, the electrochemical behavior of the Bi working electrode was characterized in several non-deaerated buffer solutions using cyclic voltammetry. The detection and quantification of Pb (II) and Cd (II) were statically performed using anodic stripping voltammetry inside the microchannels, in the Pb (II) concentration range of 25–400 ppb (R2 = 0.991) with limit of detection of 8 ppb for 60 s deposition, and in the Cd (II) concentration range of 28–280 ppb (R2 = 0.986) with limit of detection of 9.3 ppb for 90 s deposition. Particularly, the applications of this sensor chip have been reported with the examples of in situ measurement of Cd (II) concentration in soil pore and ground water and online direct measurement of Cd (II) concentration in cell culture media in its native environment.  相似文献   

2.
This paper presents a reusable polymer lab chip sensor for continuous and on-site heavy metal monitoring in nature. In particular, detection of lead (Pb(II)), which is the most common heavy metal pollutant, has been performed using the proposed lab chip sensor. The miniaturized lab chip sensor consists of a microfabricated silver working electrode that replaces the conventional mercury and bismuth electrodes, an integrated silver counter and quasi-reference electrode, and microfluidic channels. The proposed sensor targets on-site environmental monitoring in a continuous fashion without disturbing or contaminating the sensing environment when it is reused. The reusability of the miniaturized lab chip sensor was characterized through forty-three consecutive measurements in non-deoxygenating standard solutions inside the microchannels using square-wave anodic stripping voltammetry (SWASV). With only 13.5 μL of sample volume the sensor chip showed a correlation coefficient of 0.998 for the Pb(II) concentration range of 1-1000 ppb with the limit of detection of 0.55 ppb at 300 s deposition time. The peak potentials during the forty-three consecutive SWASV measurements showed a relative standard deviation of 1.0%, with a standard deviation of 0.005 V. The high repeatability and linearity of the sensor over the large, three orders of magnitude, dynamic range of 1-1000 ppb showed that the developed sensor chip can be reused for a variety of on-site measurements such as for soil pore water or groundwater, using only micro-volumes.  相似文献   

3.
常见的电化学气体传感器就其工作状态而言,大多属稳态类型,功能单一,传感器性能的提高受到“稳态”的制约,本文根据薄层电化学原理,提出并建立了一类全新的暂态电化学多组份气体传感器-多孔薄层电极库仑型气体传感器。这类以多孔薄层气体电极为核心元件构成的库仑型气体传感器,既有检测多种气体组份的功能,又有响应快、灵敏度高、低温度效应等优异性能。  相似文献   

4.
Barium titanate (BaTiO3) nanofibers were synthesized by electrospinning and calcination techniques. Two direct current (DC) humidity sensors with different electrodes (Al and Ag) were fabricated by loading BaTiO3 nanofibers as the sensing material. Compared with the Al electrode sensor, the Ag electrode sensor exhibits larger sensitivity and quicker response/recovery. The current of Al electrode sensor increases from 4.08 × 10−9 to 1.68 × 10−7 A when the sensor is switched from 11% to 95% relative humidity (RH), while the values are 2.19 × 10−9 and 3.29 × 10−7 A for the Ag electrode sensor, respectively. The corresponding response and recovery times are 30 and 9 s for Al electrode sensor, and 20 and 3 s for Ag electrode sensor, respectively. These results make BaTiO3 nanofiber-based DC humidity sensors good candidates for practical application. Simultaneously, the comparison of sensors with different electrode materials may offer an effective route for designing and optimizing humidity sensors.  相似文献   

5.
In this paper, DNA–Cu2+ complex was electrodeposited onto the surface of glassy carbon (GC) electrode, which fabricated a DNA–Cu2+/GC electrode sensor to detect H2O2 with nonenzyme. Cyclic voltammogram of DNA–Cu2+/GC electrode showed a pair of well-defined redox peaks for Cu2+/Cu+. Moreover, the electrodeposited DNA–Cu2+ complex exhibited excellent electrocatalytic behavior and good stability for the detection of H2O2. The effects of Cu2+ concentration, electrodeposition time and determination conditions such as pH value, applied potential on the current response of the DNA–Cu2+/GC electrode toward H2O2 were optimized to obtain the maximal sensitivity. The linear range for the detection of H2O2 is 8.0 × 10−7 M to 4.5 × 10−3 M with a high sensitivity of −40.25 μA mM−1, a low detection limit of 2.5 × 10−7 M and a fast response time of within 4 s. In addition, the sensor has good reproducibility and long-term stability and is interference free.  相似文献   

6.
设计了一种新型的硅微聚合酶链式反应(PCR)芯片.该芯片采用掺杂半导体作为加热电阻来提高加热效率,改善反应腔内的温度均匀性.集成在芯片底部的Pt温度传感器与微加热器组成温度控制单元,为PCR反应过程提供所需的三种特定温度.此外,为了便于温度校准,设计了敞开式的反应腔,其容积约1.78 μL.采用集总参数法计算了芯片在加...  相似文献   

7.
We have fabricated microthruster chip pairs—one chip with microthruster structures such as injection capillaries, combustion chamber and converging/diverging nozzle machined using the deep reactive ion etching process, the other chip with sputtered platinum (Pt) thin film devices such as resistance temperature detectors (RTDs) and a heater. To our knowledge, this is the first microelectromechanical systems-based microthruster with fully integrated temperature sensors. The effects of anneal up to 1,050°C on the surface morphology of Pt thin films with varied geometry as well as with/without PECVD-SiO2 coating were investigated in air and N2 and results will also be presented. It was observed that by reducing the lateral scale of thin films the morphology change can be suppressed and their adhesion on the substrate can be enhanced. Chemical analysis with X-ray photoelectron spectroscopy showed that no diffusion took place between neighboring layers during annealing up to 1?h at 1,050°C in air. Electrical characterization of sensors was carried out between room temperature and 1,000°C with a ramp of ±5?Kmin?1 in air and N2. In N2, the temperature-resistance characteristics of sensors had stabilized to a large extent after the first heating. After stabilization the sensors underwent up to eight further temperature cycles. The maximum drift of the sensor signal was observed for temperatures above 950°C and was less than 8.5?K in N2. To reduce the loss of combustion heat, chip material around microthruster structures was partially removed with laser ablation. The effects of thermal insulation were investigated with microthruster chip pairs which were clamped together mechanically. The heater was operated with up to 20?W and the temperature distribution in the chip pairs with/without thermal insulation was monitored with seven integrated RTDs. The experiments showed that a thermal insulation allows the maximum temperature as well as the temperature gradient within the microthruster chip pairs to be increased.  相似文献   

8.
A new all-solid-state Cd2+-selective electrode with a low detection limit was prepared by using conjugated thiophene oligomer α-sexithiophene (α-6T) as solid contact deposited between an ionophore-doped poly(vinyl chloride) membrane and a gold disc substrate. The electrode exhibited a Nernstian response for Cd2+ ions over a wide concentration range of 10−3-10−7 M with a detection limit as low as 1.3 × 10−8 M. Results showed that the fabricated potentiometric sensor was suitable for use within the pH range of 2.0-9.0 and exhibited good reproducibility for long-term measurements.  相似文献   

9.
J.  L.S.  N.K.  S.N.  H. 《Sensors and actuators. B, Chemical》1997,40(2-3):135-141
An amperometric mediated glucose sensor has been developed via the sol-gel technique in a new ‘sandwich’ configuration: sol-gel-ferrocene:glucose oxidase (GOx):sol-gel using a carbon paste electrode as the primary electrode. The process parameters for the fabrication of a glucose sensor based on tetramethoxysilane (TMOS) sol-gel thin films utilizing ferrocene as a mediator have been optimized. In the sol-gel matrix, the results demonstrate that GOx still retains its activity, and ferrocene is efficient at shuttling the electrons between the enzyme redox centre and the electrode. Cyclic voltammetric and amperometric measurements have been used to study the response of the glucose sensor, which has a fast response and good reproducibility. The effect of oxygen on the sensor response has been investigated. The selectivity, lifetime and fabrication reproducibility of the sensor have also been evaluated.  相似文献   

10.
提出一种基于膜电极(MEA)结构的驱动模式甲醇浓度传感器。甲醇溶液从MEA阴极流过,通过MEA渗透到阳极,Nafion膜既是电解质膜又是甲醇渗透膜。由于引入水清洁阳极,有效避免了甲醇的累积,提高了该传感器稳定性和重现性。该传感器测量范围最大可以达到5 mol/L,适合于直接甲醇燃烧电池(DMFC)系统中甲醇的监测。  相似文献   

11.
Prototype solid-state electrochemical sensors using a dense gold sensing electrode, porous yttria-stabilized zirconia (YSZ) electrolyte, and a platinum counter electrode (Au/YSZ/Pt) were evaluated for measuring NOx (NO and NO2) in diesel exhaust. Both electrodes were exposed to the test gas (i.e., there was no reference gas for the counter electrode). An impedancemetric method was used for NOx measurements, where the phase angle was used as the response signal. A portion of the tailpipe exhaust from the dynamometer test stand was extracted and fed into a furnace containing the experimental sensor. The prototype sensor was tested along with a commercially available NOx sensor. Simultaneous measurements for NOx, O2, CO2, H2O, CO, and CH4 in a separate feed stream were made using Fourier transform infrared (FTIR) spectroscopy and an oxygen paramagnetic analyzer. The experimental sensor showed very good measurement capability for NO in the range of 25-250 ppm, with a response paralleling that of the FTIR and commercial sensor. The prototype sensor showed better sensitivity to NOx at the lower concentration ranges. O2 is an interferent for the experimental sensor, resulting in decreased sensitivity for measurement of NOx. Methods to overcome this interference are discussed.  相似文献   

12.
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria.  相似文献   

13.
The present work describes the electrocatalytic behavior of phosphotungstate-doped glutaraldehyde-cross-linked poly-l-lysine (PLL-GA-PW) film electrode towards reduction of hydrogen peroxide (H2O2) in acidic medium. The modified electrode was prepared by means of electrostatically trapping the phosphotungstate anion into the cationic PLL-GA coating on glassy carbon electrode. The PLL-GA-PW film electrode showed excellent electrocatalytic activity towards H2O2 reduction in 0.1 M H2SO4. Under the optimized conditions, the electrochemical sensor exhibited a linear response for H2O2 concentration over the range 2.5 × 10−6 to 6.85 × 10−3 M with a sensitivity of 1.69 μA mM−1. The curvature in the calibration curve at high concentration is explained in terms of Michaelis-Menten (MM) saturation kinetics, and the kinetics parameters calculated by three different methods were compared. The PLL-GA-PW film electrode did not respond to potential interferents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL-GA-PW film electrode allowed selective determination of H2O2. Finally, the proposed electrochemical sensor was successfully applied to determine H2O2 in commercially available antiseptic solution and soft-contact lenses cleaning solution and the method has been validated using independent estimation by classical potassium permanganate titration method. Major advantages of the method are simple electrode fabrication, stability and high selectivity towards hydrogen peroxide.  相似文献   

14.

A pressure sensor can be used for altimetry as pressure varies with altitude. In this work, a MEMS-based bulk-micromachined piezoresistive pressure sensor is developed for micro air vehicle (MAV) application. The sensor chip has meander shaped diffused piezoresistors, placed at optimum locations determined using FEM simulations for enhancing sensitivity. Post process wet bulk micromachining is carried out to realize the sensor diaphragm, while protecting the processed wafer side. Excellent sensitivity, non-linearity and hysteresis of 34.78 mV/bar, < 0.12% and < 0.2%, respectively is obtained from static characterization of optimum sensor chip. For the operating altitude range of the MAV, the variation of output voltage of pressure sensor module (obtained by integrating the sensor chip with circuitry) with altitude is characterized inside a test chamber.

  相似文献   

15.
In this study, poly(3,4-ethylenedioxythiophene), PEDOT, was electropolymerized on a sensing chip to entrap glucose oxidase (GOD). The interdigitated array (IDA) electrode and microfluidic channel of the sensing chip was fabricated by photolithography. The IDA electrodes consist of two working electrodes in which one (WE1) was the enzyme-modified electrode and the other was a Pt (WE2) for eliminating noise effect. The microfluidic channel was formed on etched silicon by PDMS (poly(dimethylsiloxane)). In the flow injection analysis, a 0.7 V (vs. Ag/AgCl) was set on enzyme electrode to detect the catalytic product, H2O2, and the sensing signal was calibrated using the passed charge rather than the peak current. The linear relationship between the charges and the glucose concentrations, ranging from 1 to 10 mM, was obtained with a sensitivity of 157 μC cm−2 mM−1. Besides, the response time and the recovery time were about 15 and 35-75 s, respectively. In real human sample test, the error of single-potential and bi-potential were about 140% and 13%, respectively, comparing to the standard value, indicating that the WE2 can lower the interference effect in this system.  相似文献   

16.
本文对叉指型类脂膜嗅敏传感器的设计、制作和测试进行了介绍.在微加工的化学电阻上涂敷人工合成的类脂膜可做成这种传感器.在室温气态条件下对9种气味进行了测试.对多数气味物质,器件的响应与浓度关系服从Stevens乘方定律,且各种气味引起器件膜电导改变的最小浓度与相应气味的人嗅阈值存在一定的相关性.  相似文献   

17.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed.  相似文献   

18.
Thin films of metal-oxide with integrated microheater on micromachined silicon substrate have attracted great deal of interest towards the development of extremely small and highly sensitive gas sensor. Fabrication of MEMS microheater which is the key component for the development of low power gas sensor is reported here. The microheater is fabricated in a novel co planer fashion where the heating element and the inter-digitated electrode are place side by side. The fabricated device is structurally and electrically characterized by SEM and IV measurements. Using ZnO–SnO2 composite material, hydrogen sensor was constructed on the microheater platform. A suitable package for encapsulating the fabricated device is designed and the device was successfully mounted on it. The sensing behavior of the packaged sensor is performed by exposing the sensor to hydrogen.  相似文献   

19.
We present a two-axis micro fluxgate sensor on single chip for electronic compassing function. To measure X- and Y-axis magnetic fields, functional two fluxgate sensors were perpendicularly aligned and connected each other. The fluxgate sensor was composed of square-ring shaped magnetic core and solenoid excitation and pick-up coils. The solenoid coils and magnetic core were separated by benzocyclobutane which had high insulation and good planarization characters. Copper coil patterns of 10 μm width and 6 μm thickness were electroplated on Ti (300 Å)/Cu (1,500 Å) seed layers. 3 μm thick Ni0.8Fe0.2 (permalloy) film for the magnetic core was also electroplated under 2,000 gauss. Excellent linear response over the range of ?100 μT to +100 μT was obtained with the sensitivity of ~280 V/T. Actual chip size was 3.1×3.1 mm2. The sine and cosine signals of two-axis fluxgate sensor had a good function of azimuth compass.  相似文献   

20.
A high-performance capacitive humidity sensor based on a newly designed electrode and a polyimide (PI) layer is presented in this paper. The humidity sensor consists of a substrate with a cavity, a bottom electrode, a PI sensing layer, and a comb-shaped top electrode with branches. The cavity structure of the substrate was formed to protect the top electrode. In order to enhance the performance of the sensor, the coated PI layer was etched by using an O2 plasma asher in accordance with the top electrode passivation. After the PI etching, the humidity sensor showed a high sensitivity of 506 fF/% RH and a fast response time of less than 6 s, which is attributed to the increased contact area between the PI layer and moisture, and shortened moisture absorption path into the PI layer. Further characterizations were carried out to measure the effect of temperature, hysteresis, and stability. The humidity sensor showed a hysteresis of 2.05% RH, little temperature dependence, and stable capacitance value with maximum 0.28% error rate for 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号