首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to reduce the risks for ITER Plasma Facing Components (PFCs), it is proposed to equip Tore Supra with a full tungsten divertor, benefitting from the unique long pulse capabilities, the high installed RF power and the long experience with actively cooled high heat flux components of the Tore Supra platform. The transformation from the current circular limiter geometry to the required X-point configuration will be achieved by installing a set of copper poloidal coils inside the vacuum vessel. The new configuration will allow for H-mode access, providing relevant plasma conditions for PFC technology validation. Furthermore, attractive steady-state regimes are expected to be achievable. The lower divertor target design will be closely based on that currently envisaged for ITER (W monoblocks), while the upper divertor region will be used to qualify the main first wall heat sink technology adopted for the ITER blanket modules (CuCrZr copper/stainless steel) with a tungsten coating (in place of the Be tiles which ITER will use). Extended plasma exposure will provide access to ITER critical issues such as PFC lifetime (melting, cracking, etc.), tokamak operation on damaged metallic surfaces, real time heat flux control through PFC monitoring, fuel retention and dust production.  相似文献   

2.
《Fusion Engineering and Design》2014,89(7-8):1048-1053
The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units.The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.  相似文献   

3.
The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.  相似文献   

4.
In ITER, it is foreseen to use an actively-cooled tungsten (W) divertor likely from the beginning of operation. This Plasma Facing Component (PFC) will be subjected to high energy deposition during the plasma operations that severely limit component lifetime. Tungsten has been less extensively studied in tokamaks than carbon. Unlike most present day short pulse fusion devices, Tore Supra is able to reach the ITER pulse length and provide relevant discharges conditions for tungsten PFCs technology validation.A new upgrade of the machine aiming at testing a W divertor under the steady state heat fluxes is being studied in the framework of the WEST (Tungsten (W) Environment in Steady-state Tokamak) project.As the PFC requirements will change, the PFC Primary Heat transfer System (PHTS) must be upgraded. And, even if the injected power in the plasma will not be significantly increased for the WEST project, an upgrade of the Heat Rejection System (HRS) is also needed. This paper presents the studies carried out for these upgrades and the technical solutions to be implemented.  相似文献   

5.
The WEST project recently launched at Cadarache consists in transforming Tore Supra in an X-point divertor configuration while extending its long pulse capability, in order to test the ITER divertor technology. The implementation of a full tungsten actively cooled divertor with plasma facing unit representative of ITER divertor targets will allow addressing risks both in terms of industrial-scale manufacturing and operation of such components. Relevant plasma scenarios are foreseen for extensive testing under high heat load in the 10–20 MW/m2 range and ITER-like fluences (1000 s pulses). Plasma facing unit monitoring and development of protection strategies will be key elements of the WEST program.WEST is scheduled to enter into operation in 2016, and will provide a key facility to prepare and be prepared for ITER.  相似文献   

6.
Actively cooled tungsten plasma facing components will be used in the ITER divertor. In order to fully validate such a technology (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axis symmetric divertor in the tokamak Tore-Supra is studied. With this major upgrade, so called WEST (Tungsten Environment in Steady state), Tore-Supra will be the only European tokamak able to address the problematic of long plasma discharges with an actively cooled metallic divertor.To do so, it is planned to install two symmetric divertor coils inside the vacuum vessel. This assembly, called divertor structure, is made up of two stainless steel casings containing a copper winding pack cooled by hot pressurized water (200 °C, 4 MPa). These two casings are located at the top and bottom of the vacuum vessel in order to create two magnetic X-point areas, which are protected by W-PFCs (Tungsten Plasma Facing Components) in order to extract the thermal loads. The two casing are robustly maintained together by 18 brackets in order to constitute a rigid assembly attached thanks to 12 legs (one per lower vertical port) outside the Tore_Supra vacuum vessel.The paper will illustrate the technical developments performed during 2011 in order to produce a preliminary design of the Tore-Supra WEST divertor structure with a particular focus on: the mechanical design of this major component and its integration in the Tokamak, the manufacturing issues and the technical results of the feasibility studies done with industry as well as the design of a scale one coil mock up.  相似文献   

7.
ITER will be the most important machine equipped with actively cooled plasma facing components (PFCs). In case of abnormal events during a discharge, the PFC will be submitted to localized transient phenomena (high power densities, run away electrons, etc.), leading, in the worst case, to the degradation of the PFC wall and possibly to a water leak. In any case, a leak will have important consequences for the PFCs and equipment located in the vacuum vessel or connected to the ports such as seals, pumping systems or diagnostics.Considerable experience of these events has been gained at Tore Supra over a period of more than 10 years [J.J. Cordier, Ten years of maintenance on Tore Supra actively cooled components, in: Proceedings of the 21th Symp. of Fusion Technology (SOFT), Madrid, Spain, September, 2000.], which will be useful for the next step machines.This paper describes for each leak size type the procedures for maintaining save conditions in the vacuum vessel. It also presents the methods used at Tore Supra to drain-off the primary loop circuits and to identify the leaky PFC.  相似文献   

8.
Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R&D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements.The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel.Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration.In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10?6 Pa and 120 °C) after a conditioning phase at 200 °C to avoid outgassing pollution of the chamber.This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.  相似文献   

9.
This paper reviews the development of heat removal technology for plasma facing components (PFCs) and focuses on water-cooled PFCs for near term, high power applications and the use of the tungsten (W), carbon (C), and beryllium (Be) as the preferred armor materials. There are also brief summaries of developments in helium-cooled PFCs and applications of free liquid surfaces. Water-cooled PFCs with C armor have been developed for Tore Supra, ITER, LHD and W7-X. W or Be armor is of interest for ITER and other devices. W-coatings on graphite have been tried, and mockups with “W brush” armor, developed in the USA for ITER and emulated elsewhere, have withstood thermal cycling at 25 MW/m2. Reliably joining of the armor has been a significant challenge. A shorter version of this paper was published previously in the International Toki Conference on Plasma Physics and Controlled Nuclear Fusion (ITC-10), Toki, Japan, January 18–21, 2000.  相似文献   

10.
11.
12.
As the largest superconducting tokamak presently in operation, with all plasma facing components (PFC) actively cooled, Tore Supra is able to routinely address critical issues of high power long duration discharges. Twenty years of operation of Tore Supra have been valorised through “lessons learnt” studies on systems critical for long pulse operation. Real time feedback systems have been developed to safely operate at a high level (>10 MW) of injected power. The versatility of the integrated plasma controller has allowed extending feedbacks to plasma performance optimisation. A dedicated long discharges campaign, cumulating 5 h of plasma in 10 operation days without any conditioning procedure meanwhile, has allowed to gain new insights in deuterium retention studies and to reveal a new operational limit characterised by a progressive decreases of the power handling capability. A strong development effort has been undertaken to follow up the PFC ageing during and between experimental campaigns. This includes the development of an articulated inspection arm, of lock-in thermography and confocal microscopy techniques. An important part of the Tore Supra programme, is the development of reliable heating and current drive systems. Progress in the development of lower hybrid couplers, klystrons and test of a load resilient ion cyclotron range of frequency are reported.  相似文献   

13.
Passive safety of nuclear fusion reactors during ex-vessel Loss-of-Coolant Accidents (LOCAs) in the divertor cooling system has been investigated using a hybrid code, which can treat the interaction of the plasma and plasma facing components (PFCs). The code has been modified to include the impurity emission from PFCs with a diffusion model at the edge plasma. We assumed an ex-vessel LOCA of the divertor cooling system during the ignited operation in International Thermonuclear Experimental Reactor (ITER), in which a carbon-copper brazed divertor plate was employed in the Conceptual Design Activity (CDA). When a double-ended break occurs at the cold leg of the divertor cooling system, the impurity density in the main plasma becomes about twice within 2s after the LOCA due to radiation enhanced sublimation of graphite PFCs. The copper cooling tube of the divertor begins to melt at about 3s after the LOCA, even though the plasma is passively shut down a t about 4s due to the impurity accumulation. It is necessary to apply other PFC materials, which can shorten the time Period for passive shutdown, or an active shutdown system to keep the reactor structures intact for such rapid transient accident.  相似文献   

14.
15.
The plasma-facing components (PFCs) of the ITER divertor will be subjected to high heat flux (HHF). Carbon–fibre composite (CFC) is selected as the armour for the region of highest heat flux where the scrape-off layer of the plasma intercepts the vertical targets (VT). Failure of the armour to heat sink joints will compromise the performance of the divertor and could ultimately result in its failure and the shut down of the ITER machine. There are tens of thousands of CFCs to CuCrZr joints. The aim of the PFC design is to ensure that the divertor can continue to function even with the failure of a few joints. In preparation for writing the procurement specification for the ITER vertical target PFCs, a programme of work is underway with the objective of defining workable acceptance criteria for the PFC armour joints.  相似文献   

16.
17.
Actively cooled plasma facing components (PFCs) have to exhaust high heat fluxes from plasma radiation and plasma–wall interaction. Critical heat flux (CHF) event may occur in the cooling channel due to unexpected heat loading or operational conditions, and has to be detected as soon as possible. Therefore it is essential to develop means of monitoring based on precursory signals providing an early detection of this destructive phenomenon, in order to be able to stop operation before irremediable damages appear.Capabilities of CHF early detection based on acoustic techniques on PFC mock-ups cooled by pressurised water were already demonstrated. This paper addresses the problem of the detection in case of flow rate reduction and of flow dilution resulting from multiple plasma facing units (PFU) which are hydraulically connected in parallel, which is the case of ITER divertor. An experimental study is launched on a dedicated mock-up submitted to heat loads up to the CHF. It shows that the measurement of the acoustic waves, generated by the cooling phenomena, allows the CHF detection in conditions similar to that of the ITER divertor, with a reasonable number of sensors. The paper describes the mock-ups and the tests sequences, and comments the results.  相似文献   

18.
The development of the fabrication technology of macro-brush configuration of tungsten (W) and carbon (graphite and CFC) plasma facing components (PFCs) for ITER like tokamak application is presented. The fabrication of qualified joint of PFC is a requirement for fusion tokamak. Vacuum brazing method has been employed for joining of W/CuCrZr and C/CuCrZr. Oxygen free high conductivity (OFHC) copper casting on W tiles was performed followed by machining, polishing and ultrasonic cleaning of the samples prior to vacuum brazing. The W/CuCrZr and graphite/CuCrZr based test mockups were vacuum brazed using silver free alloys. The mechanical shear and tensile strengths were evaluated for the W/CuCrZr and graphite/CuCrZr brazed joint samples. The micro-structural examination of the joints showed smooth interface. The details of fabrication and characterization procedure for macro-brush tungsten and carbon based PFC test mockups are presented.  相似文献   

19.
The KSTAR plasma facing components (PFCs) consist of inboard limiter, poloidal limiter, divertor, passive stabilizer and neutral beam armor. The main function of the PFCs is to define boundary of operating plasma and to protect the vacuum vessel and in-vessel components such as diagnostic components, in vessel control coil and several kinds of launchers for heating and current drive systems. The divertor is designed to enhance effective particle control to keep high quality plasma with various flexibilities in the shaping control for wide range of operational regime. The passive stabilizer that is made of CuCrZr alloy is designed to passively control the vertical position and MHD instabilities during operation as well as outer boundary of the plasma. Since fabrication has been started for all of the plasma facing components from middle of 2009, the inboard limiter, the divertor, and the passive stabilizer were successfully installed in the vacuum vessel, in turn. Moreover, one set of neutral beam armor and three strings of poloidal limiters were also installed according to the heating system that newly comes in 2010. All the PFCs tiles were baked to 200 °C and the PFC system showed no vacuum leakage and other mechanical troubles. In this paper, key features, fabrication, results of assembly, and baking of the KSTAR PFCs are summarized in detail.  相似文献   

20.
Thermography will be an important diagnostic on the ITER tokamak, but the inclusion of reflective materials such as tungsten in the design for ITER's first wall and divertor region presents problems for optical temperature measurement. The ongoing testing of ITER plasma facing components (PFCs) provides an excellent opportunity to resolve such problems. This has focused on the variation of PFC emissivity with temperature and time, as well as environmental influence on thermography. The sensitivity of these systems to ambient temperature, due primarily to modification of the transmission of the optical path, has been established and minimised. The accuracy of the system is then sufficient to measure the variation of emissivity in heated material samples, by comparing its front-face luminance measured with an infrared camera to the temperature given by an implanted thermocouple. Measurements on both tungsten and carbon fibre composite are in broad agreement with theory, and thus give the material's function of emissivity with temperature at the start of its life. To determine its evolution, a bicolour pyroreflectometer was then installed. This uses two lasers to measure the reflectivity in addition to the luminance at two wavelengths, and thus the true temperature can be calculated. This was validated against the instrumented sample, then used along with the camera to observe an ITER mock-up during ∼50,000 s of 5 MW/m2 testing. Emissivity was seen to vary little in the 500 °C region. Higher temperature tests are ongoing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号