共查询到20条相似文献,搜索用时 0 毫秒
1.
将小波神经网络运用到故障诊断系统中。并根据小波网络构造原理,给出一种新的小波网络训练算法——共轭梯度法。实验证明小波网络比传统的BP网络收敛速度快、抗干扰能力强和对模糊边界数据识别性能优越。 相似文献
2.
3.
基于人工神经网络的改进共轭梯度算法研究 总被引:1,自引:0,他引:1
针对前馈式神经网络结构,提出用一种改进共轭梯度算法建模的最速下降搜索迭代的新方法,并把它用于神经网络。同时用神经网络来预报经济指标,通过预测中使用的基本模型和训练算法,提出了单因素非线性自回归和多因素非线性回归两种神经网络预报模型,并对四川省的社会总产值进行预测,结果表明此神经网络用于经济预测是一种新的、更精确、更有效的预测方法。 相似文献
4.
5.
6.
《电子技术与软件工程》2017,(8)
BP算法也称误差反向传播算法。主要思想就是正向传递信息,反向传播误差来调整网络的权值和阈值,使输出结果不断向目标函数逼近。由于BP算法本身的优点比较多常被分类、模式识别、函数逼近、数据压缩等。多年来对于BP算法的改进和应用领域研究也在不断地进行着。对于BP的算法改进主要有两种方式:一种是基于启发式进行的改进,一种是基于数值优化方式的改进。而基于数值优化的方式主要有共扼梯度法、L_M算法等。本文主要介绍BP算法的几种共轭梯度法思想,并利用实验进行对比分析,方便后续研究者的利用。 相似文献
7.
乳腺癌已经成为全球第一大癌症,乳腺癌的早期发现及良恶性诊断对于治疗具有重要的意义.针对传统机器学习方法在乳腺癌病理图像分类任务中性能不足和准确率低的问题,本文提出了基于CNN(卷积神经网络)的乳腺癌病理图像分类模型,将乳腺癌病理图像分为良性与恶性.该模型以VGG网络为基础,对网络结构进行调整,在公开的BreakHis数... 相似文献
8.
卫星图像的准确分割与识别在军事、环境、民生方面都有着重要的研究意义与价值.传统的区域分割算法如分水岭算法、k-means算法等在错综复杂的卫星图像中表现不佳,且不能同时给出区域的类别.为解决上述问题,本文提出一种结合CNN与分水岭算法的图像区域分割方法.该方法首先使用人工标记的区域图像训练CNN(卷积神经网络)分类器,且使其具有旋转不变性及平移不变性,从而能适应不同状态下的图像分类.然后用分水岭算法对图像进行区域粗粒度的聚类,针对分割出的每一个候选区域,使用CNN分类器对其迭代打分,最后得到分割区域并给出识别结果.实验结果表明,该方法较传统方法有更好效果. 相似文献
9.
图像重建算法是电容层析成像系统研究的关键技术,寻找一种重建图像速度和重建图像质量都能满足工业应用要求的图像重建算法是十分必要的。基于信赖域方法的共轭梯度算法是在普通共轭梯度算法的基础上提出的一种新的图像重建算法,提高了图像重建的质量与速度。 相似文献
10.
现阶段在开展目标检测工作时,当需要更换检测目标时就需要完成卷积神经网络的重新训练,导致在更换检测目标时投入更多的训练成本,花费更多的时间,降低了目标检测的准确率和效率。针对这种问题,提出了准确划分检测目标各个检测状态的种类,对输入的图像实时使用卷积神经网络图像分类模型完成图像分类,借助图像分类类别来完成检测目标状态判定。测试表明,这种方法能够满足检测目标快速更换的要求,能够极大提高检测目标的准确性,同时也在很大程度上降低了训练成本。 相似文献
11.
激活函数(Activation Functions,AF)对于卷积神经网络学习、拟合复杂函数模型来说具有十分重要的作用,为了使神经网络能更好更快的完成各类学习任务,设计了一种新型高效激活函数EReLU。EReLU通过引入自然对数函数有效缓解了神经元“坏死”和梯度弥散问题,通过分析激活函数及其导函数在前馈和反馈过程中的作用对EReLU函数的数学模型探索设计,经测试确定EReLU函数的具体设计方案,最终实现了提升精度和加速训练的效果;随后在不同网络和数据集上对EReLU进行测试,结果显示EReLU相较于ReLU及其改进函数精度提升0.12%~6.61%,训练效率提升1.02%~6.52%,这有力地证明了EReLU函数在加速训练和提升精度方面的优越性。 相似文献
12.
13.
14.
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标分辨率差异大,多尺度SAR图像目标分类准确率不高的问题,提出了一种基于迁移学习和分块卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标分类算法。首先通过大量与目标域相近的源域数据对分块CNN的参数进行训练,得到不同尺度下的CNN特征提取网络;其次将CNN的卷积和池化层迁移到新的网络结构中,实现目标特征的提取;最后用超限学习机(Extreme Learning Machine, ELM)网络对提取的特征进行分类。实验数据采用美国MSTAR数据库以及多尺度SAR图像舰船目标数据集,实验结果表明,该方法对多尺度SAR图像的分类效果优于传统CNN。 相似文献
15.
16.
17.
为解决高分辨率遥感图像所具有的类内差异大而类间差异小的特性导致的图像难分类问题,提出一种基于深度学习中卷积神经网络与Transformer优点的混合结构。对卷积层提取的特征信息使用两个带有空间位置信息的注意力机制,分别沿水平方向和垂直方向对每个通道进行特征聚集,以减少遥感场景特征的冗余映射,使网络能够提取更多与任务目标相关的信息。然后利用Transformer编码器结构对捕获的特征图进行编码操作,赋予特征图中感兴趣区域较大的权重。实验结果表明,与现有的基于深度学习的遥感图像分类方法相比,所提方法既降低了模型参数量,又提升了分类准确率,在遥感图像分类数据集AID、NWPU-RESISC45及VGoogle上均达到了最高的平均分类准确率,分别为98.95%、96.00%和95.01%。 相似文献
18.
VGGNet能提供高精度的火星图像分类,但需消耗大量内存资源。鉴于器载计算机内存资源有限,为解决这一矛盾,本文提出了基于迭代剪枝VGGNet的火星图像分类方法。首先,采用迁移学习训练网络的连通性,以便评估神经元的重要性;其次,通过迭代剪枝方法修剪不重要的神经元,以便将全连接层的参数量和内存占用量减少;最后,采用K-means++聚类实现权重参数的量化,利用霍夫曼编码压缩迭代剪枝与量化后的VGGNet权重参数,达到减少存储量和浮点数运算量的作用。此外,通过5种数据增强方法进行数据扩充,目的是解决类别不平衡的问题。实验结果表明,压缩后的VGGNet模型的所占内存、Flops和准确率分别为62.63 Mb、150.6 MFlops和96.15%。与ShuffleNet、MobileNet和EfficientNet等轻量级图像分类算法相比,所提模型具有更好的性能。 相似文献
19.
20.
利用遥感图像进行语义分割是一种有效的土地覆盖分类方法。然而由于主流框架存在边缘分割不准确、缺乏全局信息导致错误分类等问题,阻碍了其在土地覆盖分类中的应用。针对以上问题,提出了一种用于遥感图像土地覆盖分类的卷积神经网络(Convolutional Neural Networks, CNN)和Transformer混合网络CTHNet,结合了CNN的局部细节提取能力和Transformer的全局信息提取能力。同时设计了自适应融合模块,融合来自对应级别的CNN和Transformer特征,自适应融合模块的输出进入分割头得到最终的预测结果。最后,结合边界检测分支为语义分割提供边缘约束。在两个公开的土地覆盖分类数据集上的实验结果表明,该方法优于当前主流的方法,分别实现了90.53%和64.33%的平均交并比(mIoU),对遥感图像中的大目标和边界也有更好的识别效果。 相似文献