首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ITER-like W/Cu mono-block plasma-facing components (PFCs) will be used in vertical target regions of the experimental advanced superconducting tokamak (EAST) divertor. The first W/Cu mono-block small scale mock-up with five W mono-blocks has been manufactured successfully by technological combination of hot isostatic pressing (HIP) and hot radial pressing (HRP). The joining of a W mono-block and a pure copper interlayer was achieved by means of HIP technology and the bonding strength was over 150 MPa. The good bonding between the pure copper interlayer and a CuCrZr cooling tube was obtained by means of HRP technology. In order to understand deeply the process of HRP, the stress distribution of the mock-up during HRP process was simulated using ANSYS code. Ultrasonic Nondestructive Testing (NDT) of the W/Cu and Cu/CuCrZr interfaces was performed, showing that excellent bonding of the W/Cu and Cu/CuCrZr interfaces. The thermal cycle fatigue testing of the mock-up has been carried out by means of an e-beam device in Southwest Institute of Physics, Chengdu (SWIP) and the mock-up withstood 1000 cycles of heat loads up to 8.4 MW/m2 with the cooling water of 2 m/s, 20 °C, 0.2 MPa.  相似文献   

2.
Beryllium was successfully bonded to a Reduced Activation Ferritic Martensitic (RAFM) steel with a maximum strength of 150 MPa in tension and 168 MPa in shear. These strengths were achieved using Hot Isostatic Pressing (HIP), at temperatures between 700 °C and 750 °C for 2 h and under a pressure of 103 MPa. To obtain these strengths, 10 μm of titanium and 20 μm of copper were deposited on the beryllium substrate prior to HIP bonding. The copper film acted a bonding aid to the RAFM steel, while the titanium acted as a diffusion barrier between the copper and the beryllium, suppressing the formation of brittle intermetallics that are known to compromise mechanical performance. Slow cooling from the peak HIP temperature along with an imposed hold time at 450 °C further enhanced the final mechanical strength of the bond.  相似文献   

3.
This paper focuses on mechanical tests on the ITER correction coils (CC) and Feeder jacket 316L stainless steel material. During manufacture, the conductor will be compacted and spooled after cable insertion. Therefore, sample jackets were prepared under compaction in order to simulate the status of conductor during manufacturing. Yield strength (0.2% offset), ultimate tensile strength, Young's modulus and elongation at failure shall be reported. The mechanical properties of materials were measured at 300 K and low temperature (<7 K). The cryogenic test results show that the present jackets have very high properties. It is concluded that the results meet the ITER requirement.  相似文献   

4.
《Journal of Nuclear Materials》2006,348(1-2):148-164
Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1–56 dpa at temperatures from 371 to 440 °C and dose rates from 0.5 to 5.8 × 10−7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.  相似文献   

5.
The development of advanced fusion reactors like DEMO will have various challenges in materials and fabrication. The vacuum vessel is important part of the fusion reactor. The double walled design for vacuum vessel with thicker stainless steel material (40–60 mm) has been proposed in the advanced fusion reactors like ITER. Different welding techniques will have to be used for such vacuum vessel development. The required mechanical, structural and other properties of stainless steels have to be maintained in these joining processes of components of various shapes and sizes in the form of plates, ribs, shells, etc. The present paper reports characterization of welding joints of SS316L plates with higher thicknesses like 40 mm and 60 mm, prepared using multi-pass Tungsten Inert Gas (TIG) welding process. The weld quality has been evaluated with non-destructive tests by X-ray radiography and ultrasonic methods. The mechanical properties like tensile, bend tests, Vickers hardness and impact fracture tests have been carried out for the weld samples. Tensile property test results indicate sound weld joints with efficiencies over 100%. Hardening was observed in the weld zone in non-uniform manner. Macro and microstructure studies have been carried out for Base Metal (BM), Heat Affected Zone (HAZ) and Weld Zone (WZ). Scanning Electron Microscopy (SEM) analysis carried out for the impact fractured specimens show ductile fracture. The microstructural study and ferrite number data indicate the presence of high content of delta ferrite in the weld zone as compared to the delta ferrite in base metal.  相似文献   

6.
316LN stainless steel is selected as a material for toroidal-field (TF) conductor jacket of International Thermonuclear Experimental Reactor (ITER). In order to evaluate the true mechanical performance of the jacket material at 4.2 K and its suitability as the ITER TF conductor jacket, the mechanical properties of the full-size TF conductor jacket tube and sub-size specimens at 4.2 K and 300 K were investigated according to ASTM standards. The measured yield strength and elongation at 4.2 K for sub-size specimens and full-size tubes are more than 950 MPa and 20%, respectively. In addition, the fractographies of all fractured specimens were observed using scanning electron microscope (SEM). These results suggest that the TF conductor jacket can satisfy ITER requirements and the result of the full-size tube at 4.2 K is more representative and important for practical applications.  相似文献   

7.
A simple technique was developed to join C/C composite to Cu using active Cu–3.5Si braze for nuclear thermal applications. The brazing alloy exhibited good wettability on C/C substrate due to the reaction layer formed at the interface. A strong interfacial bond of the brazing alloy on C/C with the formation of TiC + SiC + Ti5Si3 reaction layer was obtained. The produced CC/Cu/CuCrZr joint exhibited shear strength as high as 79 MPa and excellent thermal resistance during the thermal shock tests.  相似文献   

8.
The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.  相似文献   

9.
Tensile, fatigue, and creep tests were conducted to investigate the effect of grain refinement by the addition of nitrogen on mechanical properties of nitrogen alloyed type 316LN stainless steel. Grain size was reduced from 100 μm to 47 μm as nitrogen concentration was increased from 0.04% (N04) to 0.10% (N10). When nitrogen concentration was increased, there was a 20% increase in yield stress and a 14% increase in UTS, respectively. Elongation was not significantly changed with increasing nitrogen concentration. As nitrogen concentration was increased, there was a 41% increase in fatigue life and an approximately sixfold increase in the time to rupture. As grain size was reduced from 100 μm to 47 μm, there was an 8% increase in yield stress and a 3% increase in UTS, respectively. Elongation was little changed with decreasing grain size. As grain size was reduced from 100 μm to 47 μm, there was a 9% increase in fatigue life and a 23% increase in the time to rupture. The grain refinement achieved by the addition of nitrogen improved the high temperature mechanical properties of nitrogen alloyed type 316LN stainless steel but was not the main mechanism for improvement of mechanical properties.  相似文献   

10.
The effects of using different clad materials on the dynamics of a material test research reactor were studied. For this purpose, the aluminum clad of an MTR was replaced separately with stainless steel-316 and zircaloy-4. Simulations were carried out to determine the reactor performance under reactivity insertion and loss-of-flow transients. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that during the fast reactivity insertion transient, Al cladded fuel attained the maximum reactor power of 59.34 MW, while stainless steel-316 cladded attained 48.74 MW and zircaloy-4 cladded attained maximum power of 55.87 MW. During the slow reactivity insertion transient, Al cladded fuel attained the maximum reactor power of 12.38 MW, while stainless steel-316 cladded attained 12.23 MW and zircaloy-4 cladded attained maximum power of 12.34 MW. During the loss-of-flow transients, the reactor power of the stainless steel-316 cladded fuel remained slightly lower than the other two. The fuel temperature of stainless steel-316 and zircaloy-4 cladded fuels remained higher due to poor fuel–clad gap conductance.  相似文献   

11.
设计了旋转叶片式纳米流体腐蚀实验装置,以ITER堆内部件水冷设计方案为参考条件,开展了两种质量分数(0.01%和1%)氧化铝纳米流体对聚变堆结构材料RAFM钢、316L(N)钢及管道热沉材料CuCrZr合金等样品服役条件下的腐蚀实验。样品的SEM、EDS、XPS分析结果表明:两种质量分数的纳米流体对RAFM钢、316L(N)钢的腐蚀轻微,与纳米流体呈现良好的相容性;CuCrZr合金表面生成一层氧化膜,表面腐蚀形貌呈现出点坑及裂纹;腐蚀时间、纳米流体流速及纳米颗粒含量对腐蚀程度和表面形貌影响显著;CuCrZr合金表面发生了吸氧腐蚀与冲刷腐蚀,两者的耦合效应加速了腐蚀进程。  相似文献   

12.
The high temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading conditions are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1 × 103 s?1 to 5 × 103 s?1 and temperatures between 25 °C and 800 °C. The experimental results indicate that the flow response and fracture characteristics of 316L stainless steel are significantly dependent on the strain rate and temperature. The fracture analysis results indicate that the 316L specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed 316L specimens are characterised by a dimple-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.  相似文献   

13.
The first wall(FW) is one of the core components in ITER. As the heat sink material,the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates,and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment,the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250?C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm.  相似文献   

14.
Vacuum plasma-spraying (VPS) can be used for the industrial deposition of thick W coatings on actively water-cooled components made of low activation steel or stainless steel. Mock-ups made of martensitic steels, EUROFER and F82H, as well as steel 316L, were coated with 2 mm thick W-VPS layers. The coated materials are candidates for first wall components (ITER and DEMO) receiving moderate heat load of up to 1 MW/m2. Mixed tungsten/steel interlayers were applied to reduce the residual and thermal stresses at the substrate–coating interface and to improve the adhesion of the coating. The advantage of this mixed interlayer is that no further (high activation) materials have to be introduced to improve coating adhesion.The characterisation of the W-VPS layers includes the evaluation of the coating microstructure, the measurement of physical and mechanical properties and the metallographical examination before and after heat load tests.Heat load tests with steady state operation up to 2.5 MW/m2 and cycling heat loads of 2 MW/m2, were successfully completed. They confirm the thermomechanical suitability of industrially manufactured W-VPS coatings for plasma facing first wall components made of steel.  相似文献   

15.
The Neutral Beam Test Facility (NBTF) to be realized in Padoa will test the Neutral Beam Injection (NBI), one of the Heating and Current Drive Systems foreseen for ITER. The NBI is based on the acceleration of hydrogen or deuterium negative ions up to 1 MeV. This work has been aimed at assessing the tritium release from the NBTF in order to provide data for the safety analysis. In particular, the diffusion of the tritium through the neutral beam target material (the CuCrZr alloy calorimeter panels) has been assessed by using literature data of the diffusion coefficient. The tritium generated inside the calorimeter panels moves into both the vacuum and water side: the tritium diffusion flux has been evaluated during the beam-on (200 °C) and the beam-off (20 °C) phases of the NBTF experiments consisting of an interim campaign and a final test. The penetration depth of the tritium through the 2 mm thick CuCrZr alloy material has been also evaluated by using a Monte-Carlo code. As main result, the assessed diffusion flux of tritium during both the beam-on and the beam-off phases are modest. In fact, at the end of the interim campaign (100 days), about the 96% of the all generated tritium (626.5 MBq) exits the calorimeter while the residual tritium inventory (25 MBq) leaves the copper alloy with a diffusion time of about 1 month. At the end of the final test (14 days) about the 99% of the total generated tritium (1.023 × 104 MBq) leaves the copper alloy and the remaining tritium inventory (152.2 MBq) is released by about 32 days. In both the interim campaign and the final test, more than the 99% of the total tritium is transferred into the vacuum side of the calorimeter panel while negligible tritium amounts enter the cooling water system thus showing a very low impact on the environment.  相似文献   

16.
Tungsten was coated on a W/Cu functionally graded material (FGM) by chemical vapor deposition technique (CVD), and then the tungsten coated tile was brazed on the CuCrZr heat sink with a cooling channel. The thickness of CVD-W was 2 mm deposited by a fast rate of about 0.7 mm/h. The features of the CVD-W coating including morphology, element composition and thermal properties were characterized. A tungsten coating with high density, purity and thermal conductivity is achieved. The bonding strength between the CVD-W layer and FGM was measured using bonding tensile tests. Thermal screening and fatigue tests were performed on the CVD-W mock-ups under fusion relevant conditions using an electron beam device. Experimental results showed that the CVD-W mock-up failed by melting of Cu beneath the tungsten layer under a high heat load of 14.5 MW/m2 and 30 s pulse duration. Thermal fatigue tests showed that the CVD-W mock-up could sustain 1000 cycles at a heat load of 11.7 MW/m2 absorbed power density and 15 s pulse duration without visible failure.  相似文献   

17.
The kinetic parameters of a material test research reactor using stainless steel-316 and zircaloy-4 as clad were calculated. For this purpose, the aluminum clad of an MTR was replaced separately with stainless steel-316 and zircaloy-4. Calculations were carried out to find the core excess reactivity, neutron flux spectrum, prompt neutron generation time and effective delayed-neutron fraction. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that at the beginning of life, the excess reactivity was maximum at 0.054110 Δk/k when zircaloy-4 was used as clad while it was minimum at ?0.365650 Δk/k when stainless steel-316 was the clad as compared to 0.017945 Δk/k for aluminum. The thermal neutron flux at the mid of the central flux trap increased by 59.9% and 12.5% for stainless steel and zircaloy-4 clads, respectively, from the flux of the original aluminum clad. The prompt neutron generation time was maximum at 45.36 μs when stainless steel-316 was the clad while it was minimum at 44.03 μs for the original aluminum clad. The effective delayed-neutron fraction was maximum at 0.007185 for the original aluminum clad while it was minimum at 0.007078 for stainless steel clad.  相似文献   

18.
《Fusion Engineering and Design》2014,89(7-8):1029-1032
Blocks of tungsten and ferritic–martensitic steel (FMS) were joined without any interfacial defects or cracks. For the joining, two times of a hot isostatic pressing (HIP) were performed. The first HIP (900 °C, 100 MPa, 1.5 h) facilitates the diffusion bonding between W and FMS. The second HIP (750 °C, 70 MPa, 2 h) corresponds to a tempering process to retain the mechanical properties of the FMS. As an interlayer material, titanium foil that can mitigate the thermal expansion difference between W and FMS was used. In addition, a molybdenum foil was inserted to prevent an unwanted bonding of W to a canning material. The lateral cracks in W plates, which were usually observed in the case of a conventional HIP process, were not observed when the molybdenum separator was used. W/FMS joint mock-ups with a dimension of 50 mm × 50 mm × 32 mm (T) were successfully fabricated. The shear strength of the joints was 89 MPa on average.  相似文献   

19.
The actively cooled high-heat flux divertor of the Wendelstein 7-X stellarator consists of individual target elements made of a water-cooled CuCrZr copper alloy heat sink armored with CFC tiles. The so-called “bi-layer” technology developed in collaboration with the company Plansee for the bonding of the tiles onto the heat sink has reliably demonstrated the removal of the specified heat load of 10 MW/m2 in the central area of the divertor. However, due to geometrical constraints, the loading performance at the ends of the elements is reduced compared to the central part. Design modifications compatible with industrial processes have been made to improve the cooling capabilities at this location. These changes have been validated during test campaigns of full-scale prototypes carried out in the neutral beam test facility GLADIS. The tested solution can remove reliably the stationary heat load of 5 MW/m2 and 2 MW/m2 on the top and on the side of the element, respectively. The results of the testing allowed the release of the design and fabrication processes for the next manufacturing phase of the target elements.  相似文献   

20.
The fabrication of the actively cooled high-heat flux divertor of the WENDELSTEIN 7-X stellarator (W7-X) requires the delivery of 890 target elements, which are designed to withstand a stationary heat flux of 10 MW/m2. The organization of the manufacturing and testing route for the serial fabrication is the result of the pre-series activities. Flat CFC Sepcarb® NB31 tiles are bonded to CuCrZr copper alloy cooling structure in consecutive steps. A copper layer is active metal cast to CFC tiles, and then an OF-copper layer is added by hot isostatic pressing to produce bi-layer tiles. These tiles are bonded by electron beam welding onto the cooling structure, which was manufactured independently. The introduction of the bi-layer technology proved to be a significant improvement of the bond reliability under thermal cycling loading. This result is also the consequence of the improved bond inspections throughout the manufacturing route performed in the ARGUS pulsed thermography facility of PLANSEE. The repairing process by electron beam welding of the bonding was also qualified. The extended pre-series activities related to the qualification of fabrication processes with the relevant non-destructive examinations aim to minimize the risks for the serial manufacturing and to guarantee the steady-state operation of the W7-X divertor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号