首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method, photoionization aerosol mass spectrometry (PIAMS), is described for real-time analysis of organic components in airborne particles below approximately 300 nm in diameter. Particles are focused through an aerodynamic lens assembly into the mass spectrometer where they are collected on a probe in the source region. After a sufficient amount of sample has been collected, the probe is irradiated with a pulsed infrared laser beam to vaporize organic components, which are then softly ionized with coherent vacuum ultraviolet radiation at 118 nm (10.5 eV). Since the photon energy is close to the ionization energies of most organic compounds, fragmentation is minimized. Both aliphatic and aromatic compounds of atmospheric relevance are detected and quantified in the low- to midpicogram range. The photoionization signal intensity increases linearly with the amount of material sampled and is independent of particle size. The fragmentation induced by laser desorption is greater than that observed with thermal vaporization, suggesting that the internal energy imparted by the former is greater. Although some molecular fragmentation is observed, mass spectra from common sources of ambient organic aerosol are distinguishable and consistent with previous off-line measurements by gas chromatography/mass spectrometry. These results illustrate the potential of PIAMS for molecular characterization of organic aerosols in ambient and smog chamber measurements.  相似文献   

2.
Bioaerosol mass spectrometry is being developed to analyze and identify biological aerosols in real time. Mass spectra of individual Bacillus endospores were measured with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores, this threshold had a mean value of approximately 1 nJ/microm(2) (0.1 J/cm(2)). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single-spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single-spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.  相似文献   

3.
Direct inlet aerosol mass spectrometry plays an increasingly important role in applied and fundamental aerosol and nanoparticle research. Laser desorption/ionization (LDI) based techniques for single particle time-of-flight mass spectrometry (LDI-SP-TOFMS) are a promising approach in the chemical analysis of single aerosol particles, especially for the detection of inorganic species and distinction of particle classes. However, until now the detection of molecular organic compounds on a single particle basis has been difficult due to the high laser power densities which are required for the LDI process as well as due to the inherent matrix effects associated with this ionization technique. By the application of a two-step approach, where an IR desorption laser pulse is applied to perform a gentle desorption of organic material from the single particle surface and a second UV-laser performs the soft ionization of the desorbed species, this drawback of laser based single particles mass spectrometry can be overcome. The postionization of the desorbed molecules has been accomplished in this work by resonance enhanced multiphoton ionization (REMPI) using a KrF excimer laser (248 nm). REMPI allows an almost fragmentation free trace analysis of polycyclic aromatic hydrocarbons (PAHs) and their derivatives from individual single particles (laser desorption-REMPI postionization-single particle-time-of-flight mass spectrometry or LD-REMPI-SP-TOFMS). Crucial system parameters of the home-built aerosol mass spectrometer such as the power densities and the relative timing of both lasers were optimized with respect to the detectability of particle source specific organic signatures using well characterized standard particles. In a second step, the LD-REMPI-SP-TOFMS system was applied to analyze different real world aerosols (spruce wood combustion, gasoline car exhaust, beech wood combustion, and diesel car exhaust). It was possible to distinguish the particles from different sources by their molecular signature. Finally, exemplary ambient aerosol measurements have been carried out, which demonstrate the potential of the method for investigating urban aerosol and making contributions to source attribution studies.  相似文献   

4.
A temperature-programmed thermal desorption method for measuring vapor pressures of low-volatility organic aerosol compounds has been developed. The technique employs a thermal desorption particle beam mass spectrometer we have recently developed for real-time composition analysis of organic aerosols. Particles are size selected using a differential mobility analyzer, sampled into a high-vacuum chamber as an aerodynamically focused beam, collected by impaction on a cryogenically cooled surface, slowly vaporized by resistive heating, and analyzed in a quadrupole mass spectrometer. A simple evaporation model developed from the kinetic theory of gases is used to calculate compound vapor pressures over the temperature range of evaporation. The data are fit to a Clausius-Clapeyron equation to obtain a relationship between vapor pressure and temperature and to determine the heat of vaporization. The technique has been evaluated using C13-C18 monocarboxylic and C6-C8 dicarboxylic acids, which have vapor pressures at 25 degrees C of approximately 10(-4) - 10(-6) Pa, but less volatile compounds can also be analyzed. The method is relatively simple and rapid and yields vapor pressures and heats of vaporization that are in good agreement with literature values. The technique will be used to generate a new database of vapor pressures for low-volatility atmospheric organic compounds.  相似文献   

5.
Infrared laser evaporation of single aerosol particles in a vacuum followed by vacuum ultraviolet (VUV) laser ionization and time-of-flight mass spectroscopy of the resulting vapor provides a depth profile of the particle's composition. Analyzing glycerol particles coated with 60-150-nm coatings of oleic acid using either a CO2 laser or a tunable optical parametric oscillator as an evaporation laser results in mass spectra that depend on the IR laser power. Low infrared laser powers incompletely vaporize particles and preferentially probe the composition of the surface layers of the particle, but high laser powers evaporate the entire particle and produce spectra representative of the particle's total composition. In the limit of low laser power, the fraction of oleic acid in the mass spectra is as much as 50 times greater than the fraction of oleic acid in the particle, providing a surface-layer-specific characterization. The OPO laser provides even more surface specificity, producing an [oleic acid]/[glycerol] ratio as much as four times larger (for a 60-nm coating) than that obtained using the CO2 laser. The infrared laser power required to sample the core of the particle increases with the thickness of the coating and is sensitive to changes in the coating thickness on the order of 10 nm. In contrast to these intuitively appealing results, high CO2 laser powers (approximately 90 mJ/pulse) produce mass spectra that, at short delays between the CO2 and VUV lasers, show enrichment of the core material rather than the coating. Likewise, tuning the OPO to frequencies that are resonant with the core material but transparent to the coating also results in selective detection of the core. The results suggest that a shattering mechanism dominates the vaporization dynamics in these situations.  相似文献   

6.
The first results are reported from a new single-particle two-color laser time-of-flight mass spectrometer, incorporating a combination of infrared (CO(2)) and UV (excimer) laser irradiation. This combination of lasers has the capability to effectively separate the desorption or evaporation step from the ionization step, thereby greatly improving the analytical capabilities of such an instrument. The results on liquid aerosols, such as aniline, show that prior evaporation of the aerosol particle with the IR laser increases the ion signal produced by the excimer laser by more than 2 orders of magnitude. In the case of nitrobenzene aerosols, the excimer laser alone produces no ions, while a very large signal is observed when the aerosol is first irradiated with the CO(2) laser. A simple model, based on the Coulomb explosion of the ionized aerosol, is used to estimate the number of ions generated by the excimer laser (~10(5) ions). Experimental evidence based on the observed time delay of protonated aniline parent ions indicates that the laser irradiation of the liquid aerosol results in a stable neutral plasma which separates into positive and negative charges only after a 100-500-ns delay.  相似文献   

7.
Single aerosol particles of ethylene glycol and oleic acid are vaporized on a heater at temperatures between 500 and 700 K, and the resulting vapor plume is ionized by a 10.5-eV vacuum ultraviolet (VUV) laser. The mass spectra are compared to those obtained by CO2 laser vaporization followed by VUV laser ionization. The relative intensities of the parent and fragment ion peaks are remarkably similar for the two modes of vaporization. A Maxwell-Boltzmann distribution of speeds accurately describes the dependence of the signal as a function of the VUV laser pulse timing. The signal levels obtained with this design are sufficient to obtain good-quality mass spectra.  相似文献   

8.
The particle size distribution and composition of nanosecond laser-generated aerosols from brass samples in atmospheric argon has been measured by low-pressure impaction and subsequent quantitative analysis of the aerosols by total reflection X-ray fluorescence. Ablation was performed applying a Nd:YAG laser at 1.06 microm both without and with a prepulse plasma breakdown generated by a second Nd:YAG laser at 2-60 micros prior to the ablation pulse. The beam of the prepulse laser had orthogonal direction to the ablation laser beam, and the breakdown was produced 2.5 mm above the ablation spot. Ultrafine aerosol particles (<50 nm) were generated in the double-pulse experiment representing practically the total mass impacted, while in single-pulse ablation the proportion of large particles (>0.1 microm) was dominating. The predominance of ultrafine aerosols in the prepulse experiment indicates that particle formation from vapor-phase condensation is the major mechanism, while the appearance of large particles in single-pulse ablation points at fragmentary evaporation in the laser-produced plasma. It was also shown that the total mass impacted in double-pulse ablation increases almost linearly with the power of the prepulse laser. The better atomization and the larger sample mass ablated can be assumed to be the main reasons for the increase of the line intensities in double-pulse laser-induced breakdown spectrometry with orthogonal prepulses reported by several research groups.  相似文献   

9.
We demonstrate that molecular ions with mass-to-charge ratios (m/z) ranging from a few hundred to 19 050 can be desorbed from whole bacterial spores using infrared laser desorption and no chemical matrix. We have measured the mass of these ions using time-of-flight mass spectrometry and we observe that different ions are desorbed from spores of Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Bacillus niger. Our results raise the possibility of identifying microorganisms using mass spectrometry without conventional sample preparation techniques such as the addition of a matrix. We have measured the dependence of the ion yield from B. subtilis on desorption wavelength over the range 3.05-3.8 microm, and we observe the best results at 3.05 microm. We have also generated mass spectra from whole spores using 337-nm ultraviolet laser desorption, and we find that these spectra are inferior to spectra generated with infrared desorption. Since aerosol analysis is a natural application for matrix-free desorption, we have measured mass spectra from materials such as ragweed pollen and road dust that are likely to form a background to microbial aerosols. We find that these materials are readily differentiated from bacterial spores.  相似文献   

10.
A synchrotron radiation based aerosol time-of-flight mass spectrometer using tunable vacuum-ultraviolet (VUV) light is described for real-time analysis of organic compounds in ultrafine and large aerosol particles. Particles are sampled from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. As the particles enter the source region, they impinge on a cartridge heater and are vaporized. The particle vapor expands back into the source region and is softly ionized with tunable, quasicontinuous VUV light generated with synchrotron radiation. The radiation can be tuned to an energy close to the ionization energy of the sample molecules, thus minimizing the complications resulting from ion fragmentation. Photoionization efficiency scans (photon scans) can be readily collected, which permit measurement of the molecule's ionization energy and fragmentation onsets. Four high molecular weight, low vapor pressure organic compounds of importance in atmospheric aerosols are analyzed and their ionization energies measured with uncertainties of +/-60 meV. These are oleic acid (8.68 eV), linoleic acid (8.52 eV), linolenic acid (8.49 eV), and cholesterol (8.69 eV).  相似文献   

11.
Kaye PH  Barton JE  Hirst E  Clark JM 《Applied optics》2000,39(21):3738-3745
We describe a prototype laboratory light-scattering instrument that integrates two approaches to airborne particle characterization: spatial light-scattering analysis and intrinsic fluorescence measurement, with the aim of providing an effective means of classifying biological particles within an ambient aerosol. The system uses a single continuous-wave 266-nm ultraviolet laser to generate both the spatial elastic scatter data (from which an assessment of particle size and shape is made) and the particle intrinsic fluorescence data from particles in the approximate size range of 1-10-mum diameter carried in a sample airflow through the laser beam. Preliminary results suggest that this multiparameter measurement approach can provide an effective means of classifying different particle types and can reduce occurrences of false-positive detection of biological aerosols.  相似文献   

12.
Shi YJ  Hu XK  Mao DM  Dimov SS  Lipson RH 《Analytical chemistry》1998,70(21):4534-4539
A series of liquid O,S-dialkyl dithiocarbonates (xanthate esters) have been synthesized, and time-of-flight (TOF) mass spectra were recorded for their vapors using both ultraviolet (UV) and vacuum ultraviolet (VUV) laser excitation. These compounds are chemical derivatives of low vapor pressure xanthate salts which have found important commercial application as collectors in mineral sulfide flotation circuits. Our experiments demonstrate that esters ionized by short-wavelength VUV light can be detected by parent mass with high efficiency and minimal fragmentation. In contrast, the mass spectra of the same compounds obtained by UV light excitation exhibit a large number of low molecular mass peaks. A preliminary quantitative analysis of the composition of a gas-phase mixture of xanthate esters has also been achieved, which indicates possible subfemtomole detection limits.  相似文献   

13.
Individual airborne biomolecule-containing particles were detected and characterized in near real-time by matrix-assisted laser desorption/ionization (MALDI) with an ion trap mass spectrometer. Biomolecule-containing particles were laboratory-generated and passed through a heated region containing a solution of matrix in equilibrium with the gas phase. Passage into a cooler region created a supersaturation, resulting in rapid deposition of the matrix vapor onto the biomolecule-containing particles, whereupon they were sampled into the inlet of our spectrometer. The coated particles were collimated and individually sized by light-scattering-based time-of-flight. When the sized particle reached the center of the ion trap, it was irradiated with a focused 266-nm laser, and the resulting ions were mass-analyzed. Mass spectra of leucine enkephalin, bradykinin, substance P, and polylysine-containing particles were determined with attomole sensitivity. Structural information of the peptides contained in an individual particle was obtained by tandem mass spectrometry. Analysis of the results yields insights into the aerosol laser ablation ionization process that suggests an optically limited mechanism for ion production that has interesting ramifications on the utility of aerosol-based MALDI as an analytical technique.  相似文献   

14.
Fang W  Gong L  Shan X  Liu F  Wang Z  Sheng L 《Analytical chemistry》2011,83(23):9024-9032
This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.  相似文献   

15.
The mechanisms of disintegration of submicrometer particles irradiated by short laser pulses are studied by a molecular dynamics simulation technique. Simulations at different laser fluences are performed for particles with homogeneous composition and particles with transparent inclusions. Spatially nonuniform deposition of laser energy is found to play a major role in defining the character and the extent of disintegration. The processes that contribute to the disintegration include overheating and explosive decomposition of the illuminated side of the particle, spallation of the backside of large particles, and disruption of the transparent inclusion caused by the relaxation of the laser-induced pressure. The observed mechanisms are related to the nature of the disintegration products and implications of the simulation results for aerosol time-of-flight mass spectrometry are discussed. Application of multiple laser pulses is predicted to be advantageous for efficient mass spectrometry sampling of aerosols with a large size to laser penetration depth ratio.  相似文献   

16.
Organic aerosols are a major fraction, often more than 50%, of the total atmospheric aerosol mass. The chemical composition of the total organic aerosol mass is poorly understood, although hundreds of compounds have been identified in the literature. High molecular weight compounds have recently gained much attention because this class of compounds potentially represents a major fraction of the unexplained organic aerosol mass. Here we analyze secondary organic aerosols, generated in a smog chamber from alpha-pinene ozonolysis with ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). About 450 compounds are detected in the mass range of m/z 200-700. The mass spectrum is clearly divided into a low molecular weight range (monomer) and a high molecular weight range, where dimers and trimers are distinguishable. Using the Kendrick mass analysis, the elemental composition of about 60% of all peaks could be determined throughout the whole mass range. Most compounds have high O:C ratios between 0.4 and 0.6. Small compounds (i.e., monomers) have a higher maximum O:C ratio than dimers and trimers, suggesting that condensation reactions with, for example, the loss of water are important in the oligomer formation process. A program developed in-house was used to determine exact mass differences between peaks in the monomer, dimer, and trimer mass range to identify potential monomer building blocks, which form the co-oligomers observed in the mass spectrum. A majority of the peaks measured in the low mass region of the spectrum (m/z < 300) is also found in the calculated results. For the first time the elemental composition of the majority of peaks over a wide mass range was determined using advanced data analysis methods for the analysis of ultra-high-resolution MS data. Possible oligomer formation mechanisms in secondary organic aerosols were investigated.  相似文献   

17.
We present a new elemental analysis (EA) technique for organic species (CHNO) that allows fast on-line analysis (10 s) and reduces the required sample size to approximately 1 ng, approximately 6 orders of magnitude less than standard techniques. The composition of the analyzed samples is approximated by the average elemental composition of the ions from high-resolution electron ionization (EI) mass spectra. EA of organic species can be performed on organic/inorganic mixtures. Elemental ratios for the total organic mass, such as oxygen/carbon (O/C), hydrogen/carbon (H/C), and nitrogen/carbon (N/C), in addition to the organic mass to organic carbon ratio (OM/OC), can be determined. As deviations between the molecular and the ionic composition can appear due to chemical influences on the ion fragmentation processes, the method was evaluated and calibrated using spectra from 20 compounds from the NIST database and from 35 laboratory standards sampled with the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The analysis of AMS (NIST) spectra indicates that quantification of O/C is possible with an error (average absolute value of the relative error) of 30% (17%) for individual species. Precision is much better than accuracy at +/-5% in the absence of air for AMS data. AMS OM/OC has an average error of 5%. Additional calibration is recommended for types of species very different from those analyzed here. EA was applied to organic mixtures and ambient aerosols (sampled at 20 s from aircraft). The technique is also applicable to other EI-HRMS measurements such as direct injection MS.  相似文献   

18.
A new type of aerosol mass spectrometer was developed by minimal modification of an existing commercial ion trap to analyze the semivolatile components of aerosols in real time. An aerodynamic lens-based inlet system created a well-collimated particle beam that impacted into the heated ionization volume of the commercial ion trap mass spectrometer. The semivolatile components of the aerosols were thermally vaporized and ionized by electron impact or chemical ionization in the source. The nascent ions were extracted and injected into the ion trap for mass analysis. The utility of this instrument was demonstrated by identifying semivolatile analytes in complex aerosols. This study is part of an ongoing effort to develop methods for identifying chemical species related to CW agent exposure. Our efforts focused on detection of CW-related species doped on omnipresent aerosols such as house dust particles vacuumed from various surfaces found in any office building. The doped aerosols were sampled directly into the inlet of our mass spectrometer from the vacuumed particle stream. The semivolatile analytes were deposited on house dust and identified by positive ion chemical ionization mass spectrometry up to 2.5 h after deposition. Our results suggest that the observed semivolatile species may have been chemisorbed on some of the particle surfaces in submonolayer concentrations and may remain hours after deposition. This research suggests that identification of trace CW agent-related species should be feasible by this technique.  相似文献   

19.
Size-selective sampling of Bacillus anthracis surrogate spores from realistic, common aerosol mixtures was developed for analysis by laser-induced breakdown spectroscopy (LIBS). A two-stage impactor was found to be the preferential sampling technique for LIBS analysis because it was able to concentrate the spores in the mixtures while decreasing the collection of potentially interfering aerosols. Three common spore/aerosol scenarios were evaluated, diesel truck exhaust (to simulate a truck running outside of a building air intake), urban outdoor aerosol (to simulate common building air), and finally a protein aerosol (to simulate either an agent mixture (ricin/anthrax) or a contaminated anthrax sample). Two statistical methods, linear correlation and principal component analysis, were assessed for differentiation of surrogate spore spectra from other common aerosols. Criteria for determining percentages of false positives and false negatives via correlation analysis were evaluated. A single laser shot analysis of approximately 4 percent of the spores in a mixture of 0.75 m(3) urban outdoor air doped with approximately 1.1 x 10(5) spores resulted in a 0.04 proportion of false negatives. For that same sample volume of urban air without spores, the proportion of false positives was 0.08.  相似文献   

20.
A small error in the aerosol measurements can lead to a considerable influence on our understanding towards its impact on climate. To better simulate aerosol effects on the earth’s radiation budget, the chemical and physical characterizations of aerosol particles with accurate measurements have been a key interest in the aerosol research for last several decades. Recent advances in the chemical characterization of aerosols at bulk and molecular levels, and their physical characterization, such as size distribution, hygroscopicity, and cloud condensation nuclei (CCN) activity have improved our knowledge to better understand the aerosol sources, concentration distributions, atmospheric processing and their potential climate impacts. Apart from the complexity of atmospheric aerosols, because of the limited availability of aerosol certified reference materials, traceability data and measurement protocols, it is still a challenging task to measure the aerosol properties with reduced uncertainty. The recent developments on aerosol analytical techniques (on-line and off-line), which include gas chromatography/flame ionization detector (GC/FID)/mass spectrometry (MS)/isotope ratio mass spectrometry (irMS), ion chromatography (IC), organic carbon/elemental carbon (OC/EC) and water-soluble organic carbon (WSOC) analyzers, and physical measurements using scanning mobility particle sizer (SMPS), hygroscopicity tandem differential mobility analyzer (HTDMA) and cloud condensation nuclei-counter (CCN-C) are discussed with the metrological issues in the measurements. The importance of aerosol metrology is highlighted giving the data obtained from the laboratory studies and aerosol field campaigns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号