首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multihop sensor network design for wide-band communications   总被引:1,自引:0,他引:1  
This paper presents a master/slave cellular-based mobile ad hoc network architecture for multihop multimedia communications. The proposed network is based on a new paradigm for solving the problem of cluster-based ad hoc routing when utilizing existing wireless local area network (WLAN) technologies. The network architecture is a mixture of two different types of networks: infrastructure (master-and-slave) and ad hoc. In this architecture, the participating slave nodes (SNs) in each cluster communicate with each other via their respective master nodes (MNs) in an infrastructure network. In contrast to traditional cellular networks where the base stations are fixed (e.g., interconnected via a wired backbone), in this network the MNs (e.g., base stations) are mobile; thus, interconnection is accomplished dynamically and in an ad hoc manner. For network implementation, the IEEE 802.11 WLAN has been deployed. Since there is no stationary node in this network, all the nodes in a cluster may have to move together as a group. However, in order to allow a mobile node to move to another cluster, which requires changing its point of attachment, a handoff process utilizing Mobile IP version 6 (IPv6) has been considered. For ad hoc routing between the master nodes (i.e., MNs), the Ad hoc On-demand Distance Vector (AODV) Routing protocol has been deployed. In assessing the network performance, field test trials have been carried out to measure the proposed network performance. These measurements include packet loss, delays under various test conditions such as a change of ad hoc route, handoffs, etc.  相似文献   

2.
An adaptive management architecture for ad hoc networks   总被引:13,自引:0,他引:13  
Ad hoc networks, where mobile nodes communicate via multihop wireless links, facilitate network connectivity without the aid of any preexisting networking infrastructure. The intrinsic attributes of ad hoc networks, such as dynamic network topology, limited battery power, constrained wireless bandwidth and quality, and large number of heterogeneous nodes, make network management significantly more challenging than stationary and wired networks. In particular, the conventional client/server-based manager/agent management paradigm falls short of addressing these issues. We describe the Guerrilla management architecture to facilitate adaptive and autonomous management of ad hoc networks. The management capability of Guerrilla is scalable to accommodate the sheer number and heterogeneity of nodes, autonomous and survivable to adapt to network dynamics, and economical to minimize management overhead.  相似文献   

3.
QoS issues in ad hoc wireless networks   总被引:25,自引:0,他引:25  
Ad hoc wireless networks consist of mobile nodes interconnected by multihop communication paths. Unlike conventional wireless networks, ad hoc networks have no fixed network infrastructure or administrative support. The topology of the network changes dynamically as mobile nodes join or depart the network or radio links between nodes become unusable. This article addresses some of the quality of service issues for ad hoc networks which have started to receive increasing attention in the literature. The focus is on QoS routing. This is a complex and difficult issue because of the dynamic nature of the network topology and generally imprecise network state information. We present the basic concepts and discuss some of the results. The article concludes with some observations on the open areas for further investigation  相似文献   

4.
Distributed quality-of-service routing in ad hoc networks   总被引:10,自引:0,他引:10  
In an ad hoc network, all communication is done over wireless media, typically by radio through the air, without the help of wired base stations. Since direct communication is allowed only between adjacent nodes, distant nodes communicate over multiple hops. The quality-of-service (QoS) routing in an ad hoc network is difficult because the network topology may change constantly, and the available state information for routing is inherently imprecise. In this paper, we propose a distributed QoS routing scheme that selects a network path with sufficient resources to satisfy a certain delay (or bandwidth) requirement in a dynamic multihop mobile environment. The proposed algorithms work with imprecise state information. Multiple paths are searched in parallel to find the most qualified one. Fault-tolerance techniques are brought in for the maintenance of the routing paths when the nodes move, join, or leave the network. Our algorithms consider not only the QoS requirement, but also the cost optimality of the routing path to improve the overall network performance. Extensive simulations show that high call admission ratio and low-cost paths are achieved with modest routing overhead. The algorithms can tolerate a high degree of information imprecision  相似文献   

5.
Topology and mobility considerations in mobile ad hoc networks   总被引:2,自引:0,他引:2  
Brent  Raouf   《Ad hoc Networks》2005,3(6):762-776
A highly dynamic topology is a distinguishing feature and challenge of a mobile ad hoc network. Links between nodes are created and broken, as the nodes move within the network. This node mobility affects not only the source and/or destination, as in a conventional wireless network, but also intermediate nodes, due to the network’s multihop nature. The resulting routes can be extremely volatile, making successful ad hoc routing dependent on efficiently reacting to these topology changes.

In order to better understand this environment, a number of characteristics have been studied concerning the links and routes that make up an ad hoc network. Several network parameters are examined, including number of nodes, network dimensions, and radio transmission range, as well as mobility parameters for maximum speed and wait times. In addition to suggesting guidelines for the evaluation of ad hoc networks, the results reveal several properties that should be considered in the design and optimization of MANET protocols.  相似文献   


6.
In this paper we analyze the average end-to-end delay and maximum achievable per-node throughput in random access multihop wireless ad hoc networks with stationary nodes. We present an analytical model that takes into account the number of nodes, the random packet arrival process, the extent of locality of traffic, and the back off and collision avoidance mechanisms of random access MAC. We model random access multihop wireless networks as open G/G/1 queuing networks and use the diffusion approximation in order to evaluate closed form expressions for the average end-to-end delay. The mean service time of nodes is evaluated and used to obtain the maximum achievable per-node throughput. The analytical results obtained here from the queuing network analysis are discussed with regard to similarities and differences from the well established information-theoretic results on throughput and delay scaling laws in ad hoc networks. We also investigate the extent of deviation of delay and throughput in a real world network from the analytical results presented in this paper. We conduct extensive simulations in order to verify the analytical results and also compare them against NS-2 simulations.  相似文献   

7.
In multihop wireless ad-hoc networks, the medium access control (MAC) protocol plays a key role in coordinating the access to the shared medium among wireless nodes. Currently, the distributed coordination function (DCF) of the IEEE 802.11 is the dominant MAC protocol for both wireless LANs and wireless multihop ad hoc environment due to its simple implementation and distributed nature. The current access method of the IEEE 802.11 does not make efficient use of the shared channel due to its conservative approach in assessing the level of interference; this in turn affects the spatial reuse of the limited radio resources and highly affect the achieved throughput of a multihop wireless network. This paper surveys various methods that have been proposed in order to enhance the channel utilization by improving the spatial reuse.  相似文献   

8.
Capacity of ad hoc wireless networks with infrastructure support   总被引:7,自引:0,他引:7  
We determine the asymptotic scaling for the per user throughput in a large hybrid ad hoc network, i.e., a network with both ad hoc nodes, which communicate with each other via shared wireless links of capacity W bits/s, and infrastructure nodes which in addition are interconnected with each other via high capacity links. Specifically, we consider a network model where ad hoc nodes are randomly spatially distributed and choose to communicate with a random destination. We identify three scaling regimes, depending on the growth of the number of infrastructure nodes, m relative to the number of ad hoc nodes n, and show the asymptotic scaling for the per user throughput as n becomes large. We show that when m /spl lsim/ /spl radic/n/logn the per user throughput is of order W//spl radic/n log n and could be realized by allowing only ad hoc communications, i.e., not deploying the infrastructure nodes at all. Whenever /spl radic/n/log n /spl lsim/ m /spl lsim/ n/log n, the order for the per user throughput is Wm/n and, thus, the total additional bandwidth provided by m infrastructure nodes is effectively shared among ad hoc nodes. Finally, whenever m /spl gsim/ n/log n, the order of the per user throughput is only W/log n, suggesting that further investments in infrastructure nodes will not lead to improvement in throughput. The results are shown through an upper bound which is independent of the routing strategy, and by constructing scenarios showing that the upper bound is asymptotically tight.  相似文献   

9.
The IEEE 802.11 MAC protocol is the standard for wireless LANs; it is widely used in testbeds and simulations for wireless multihop ad hoc networks. However, this protocol was not designed for multihop networks. Although it can support some ad hoc network architecture, it is not intended to support the wireless mobile ad hoc network, in which multihop connectivity is one of the most prominent features. In this article we focus on the following question: can the IEEE 802.11 MAC protocol function well in multihop networks? By presenting several serious problems encountered in an IEEE 802.11-based multihop network and revealing the in-depth cause of these problems, we conclude that the current version of this wireless LAN protocol does not function well in multihop ad hoc networks. We thus doubt whether the WaveLAN-based system is workable as a mobile ad hoc testbed  相似文献   

10.
Ad hoc网络中的路由技术   总被引:6,自引:0,他引:6  
Ad hoc网络是一些移动节点组成一个多跳的临时性无线自治系统,这种新型的通信网络具有动态变化的拓扑结构和分布控制的网络机制。文中针对Ad hoc网络作了简单的介绍并重点介绍了针对Ad hoc网络特性而提出的路由协议。  相似文献   

11.
An optical network is too costly to act as a broadband access network. On the other hand, a pure wireless ad hoc network with n nodes and total bandwidth of W bits per second cannot provide satisfactory broadband services since the pernode throughput diminishes as the number of users goes large. In this paper, we propose a hybrid wireless network, which is an integrated wireless and optical network, as the broadband access network. Specifically, we assume a hybrid wireless network consisting of n randomly distributed normal nodes, and m regularly placed base stations connected via an optical network. A source node transmits to its destination only with the help of normal nodes, i.e., in the ad hoc mode, if the destination can be reached within L (L /spl geq/ 1) hops from the source. Otherwise, the transmission will be carried out in the infrastructure mode, i.e., with the help of base stations. Two transmission modes share the same bandwidth of W bits/sec. We first study the throughput capacity of such a hybrid wireless network, and observe that the throughput capacity greatly depends on the maximum hop count L and the number of base stations m. We show that the throughput capacity of a hybrid wireless network can scale linearly with n only if m = Ω(n), and when we assign all the bandwidth to the infrastructure mode traffics. We then investigate the delay in hybrid wireless networks. We find that the average packet delay can be maintained as low as Θ(1) even when the per-node throughput capacity is Θ(W).  相似文献   

12.
Active routing for ad hoc networks   总被引:1,自引:0,他引:1  
Ad hoc networks are wireless multihop networks whose highly volatile topology makes the design and operation of a standard routing protocol hard. With an active networking approach, one can define and deploy routing logic at runtime in order to adapt to special circumstances and requirements. We have implemented several active ad hoc routing protocols that configure the forwarding behavior of mobile nodes, allowing data packets to be efficiently routed between any two nodes of the wireless network. Isolating a simple forwarding layer in terms of both implementation and performance enables us to stream delay-sensitive audio data over the ad hoc network. In the control plane, active packets permanently monitor the connectivity and setup, and modify the routing state  相似文献   

13.
The shared-medium multihop nature of wireless ad hoc networks poses fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed in wireline networks are not applicable in the context of wireless ad hoc networks, due to their unique characteristics of location-dependent contention. In this paper, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. We further improve the algorithm toward asynchronous network settings and prove its convergence. Extensive simulations under a variety of network environments have been conducted to validate our theoretical claims.  相似文献   

14.
On-Demand Multicast Routing Protocol in Multihop Wireless Mobile Networks   总被引:28,自引:0,他引:28  
An ad hoc network is a dynamically reconfigurable wireless network with no fixed infrastructure or central administration. Each host is mobile and must act as a router. Routing and multicasting protocols in ad hoc networks are faced with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. This paper presents the On-Demand Multicast Routing Protocol (ODMRP) for wireless mobile ad hoc networks. ODMRP is a mesh-based, rather than a conventional tree-based, multicast scheme and uses a forwarding group concept; only a subset of nodes forwards the multicast packets via scoped flooding. It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP performance with other multicast protocols proposed for ad hoc networks via extensive and detailed simulation.  相似文献   

15.
This paper provides an analytical model for the study of energy consumption in multihop wireless embedded and sensor networks where nodes are extremely power constrained. Low-power optimization techniques developed for conventional ad hoc networks are not sufficient as they do not properly address particular features of embedded and sensor networks. It is not enough to reduce overall energy consumption, it is also important to maximize the lifetime of the entire network, that is, maintain full network connectivity for as long as possible. This paper considers different multihop scenarios to compute the energy per bit, efficiency and energy consumed by individual nodes and the network as a whole. The analysis uses a detailed model for the energy consumed by the radio at each node. Multihop topologies with equidistant and optimal node spacing are studied. Numerical computations illustrate the effects of packet routing, and explore the effects of coding and medium access control. These results show that always using a simple multihop message relay strategy is not always the best procedure.  相似文献   

16.
Transmission Range Effects on AODV Multicast Communication   总被引:3,自引:0,他引:3  
As laptop computers begin to dominate the marketplace, wireless adapters with varying bandwidth and range capabilities are being developed by hardware vendors. To provide multihop communication between these computers, ad hoc mobile networking is receiving increasing research interest. While increasing a node's transmission range allows fewer hops between a source and destination and enhances overall network connectivity, it also increases the probability of collisions and reduces the effective bandwidth seen at individual nodes. To enable formation of multihop ad hoc networks, a routing protocol is needed to provide the communication and route finding capability in these networks. The Ad hoc On-Demand Distance Vector Routing protocol (AODV) has been designed to provide both unicast and multicast communication in ad hoc mobile networks. Because AODV uses broadcast to transmit multicast data packets between nodes, the transmission range plays a key role in determining the performance of AODV. This paper studies the effects of transmission range on AODV's multicast performance by examining the results achieved at varying transmission ranges and network configurations.  相似文献   

17.
Mesh networks: commodity multihop ad hoc networks   总被引:31,自引:0,他引:31  
In spite of the massive efforts in researching and developing mobile ad hoc networks in the last decade, this type of network has not yet witnessed mass market deployment. The low commercial penetration of products based on ad hoc networking technology could be explained by noting that the ongoing research is mainly focused on implementing military or specialized civilian applications. On the other hand, users are interested in general-purpose applications where high bandwidth and open access to the Internet are consolidated and cheap commodities. To turn mobile ad hoc networks into a commodity, we should move to more pragmatic "opportunistic ad hoc networking" in which multihop ad hoc networks are not isolated self-configured networks, but rather emerge as a flexible and low-cost extension of wired infrastructure networks coexisting with them. Indeed, a new class of networks is emerging from this view: mesh networks. This article provides an overview of mesh networking technology. In particular, starting from commercial case studies we describe the core building blocks and distinct features on which wireless mesh networks should be based. We provide a survey of the current state of the art in off-the-shelf and proprietary solutions to build wireless mesh networks. Finally, we address the challenges of designing a high-performance, scalable, and cost-effective wireless mesh network.  相似文献   

18.
Capacity regions for wireless ad hoc networks   总被引:6,自引:0,他引:6  
We define and study capacity regions for wireless ad hoc networks with an arbitrary number of nodes and topology. These regions describe the set of achievable rate combinations between all source-destination pairs in the network under various transmission strategies, such as variable-rate transmission, single-hop or multihop routing, power control, and successive interference cancellation (SIC). Multihop cellular networks and networks with energy constraints are studied as special cases. With slight modifications, the developed formulation can handle node mobility and time-varying flat-fading channels. Numerical results indicate that multihop routing, the ability for concurrent transmissions, and SIC significantly increase the capacity of ad hoc and multihop cellular networks. On the other hand, gains from power control are significant only when variable-rate transmission is not used. Also, time-varying flat-fading and node mobility actually improve the capacity. Finally, multihop routing greatly improves the performance of energy-constraint networks.  相似文献   

19.
20.
Self-coordinating localized fair queueing in wireless ad hoc networks   总被引:2,自引:0,他引:2  
Distributed fair queueing in a multihop, wireless ad hoc network is challenging for several reasons. First, the wireless channel is shared among multiple contending nodes in a spatial locality. Location-dependent channel contention complicates the fairness notion. Second, the sender of a flow does not have explicit information regarding the contending flows originated from other nodes. Fair queueing over ad hoc networks is a distributed scheduling problem by nature. Finally, the wireless channel capacity is a scarce resource. Spatial channel reuse, i.e., simultaneous transmissions of flows that do not interfere with each other, should be encouraged whenever possible. In this paper, we reexamine the fairness notion in an ad hoc network using a graph-theoretic formulation and extract the fairness requirements that an ad hoc fair queueing algorithm should possess. To meet these requirements, we propose maximize-local-minimum fair queueing (MLM-FQ), a novel distributed packet scheduling algorithm where local schedulers self-coordinate their scheduling decisions and collectively achieve fair bandwidth sharing. We then propose enhanced MLM-FQ (EMLM-FQ) to further improve the spatial channel reuse and limit the impact of inaccurate scheduling information resulted from collisions. EMLM-FQ achieves statistical short-term throughput and delay bounds over the shared wireless channel. Analysis and extensive simulations confirm the effectiveness and efficiency of our self-coordinating localized design in providing global fair channel access in wireless ad hoc networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号