首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batch adsorption experiments using powdered activated carbon (PAC) to remove trace synthetic organic chemicals (SOCs) from water containing natural organic matter (NOM) were conducted. The percentage of SOC removed at any contact time and at any PAC dose was observed to be independent of the initial SOC concentration. Equations derived from the ideal adsorbed solution theory and the pore surface diffusion model validated this observation. For the strongly adsorbing SOCs (simazine and simetryn), the percentage of SOC removed was independent only at low initial SOC concentrations. The NOM fraction competing with the weakly adsorbing SOC (asulam) constituted a larger percentage of the total NOM than that competing with the strongly adsorbing SOCs. Although the adsorptive capacities of the SOCs were greatly reduced in water containing NOM compared with those in pure water, the change in the pore diffusion coefficient was insignificant. Therefore, NOM competed with the SOCs for adsorption sites, reducing the adsorptive capacity, but the amount of NOM loading was not so severe that it blocked or filled the pores, hindering the internal diffusion of the SOCs.  相似文献   

2.
以典型的致嗅物质二甲基异茨醇(2-MIB)为代表,考察了臭氧氧化工艺去除水体嗅味的效能.试验结果表明:臭氧投量为1.5 mg/L时,蒸馏水和自来水中2-MIB的氧化降解率分别为57.3%和54.2%.水中臭氧浓度和pH值的升高可以明显提高工艺对2-MIB的去除率,臭氧投量从1.0 mg/L提高至2.0 mg/L后,2-MIB的去除率由43.9%上升至72.8%;当溶液分别由弱酸性(pH=4.0)升高至中性偏酸(pH=6.5)以及由中性偏碱(pH=7.5)升高至弱碱性(pH=9.0)时,2-MIB的去除率分别提高了24.9和21.8个百分点.水中腐殖酸的浓度不同时对反应体系的影响不同,促进与抑制作用并存.  相似文献   

3.
When treating water with activated carbon, natural organic matter (NOM) is not only a target for adsorptive removal but also an inhibitory substance that reduces the removal efficiency of trace compounds, such as 2-methylisoborneol (MIB), through adsorption competition. Recently, superfine (submicron-sized) activated carbon (SPAC) was developed by wet-milling commercially available powdered activated carbon (PAC) to a smaller particle size. It was reported that SPAC has a larger NOM adsorption capacity than PAC because NOM mainly adsorbs close to the external adsorbent particle surface (shell adsorption mechanism). Thus, SPAC with its larger specific external surface area can adsorb more NOM than PAC. The effect of higher NOM uptake on the adsorptive removal of MIB has, however, not been investigated. Results of this study show that adsorption competition between NOM and MIB did not increase when NOM uptake increased due to carbon size reduction; i.e., the increased NOM uptake by SPAC did not result in a decrease in MIB adsorption capacity beyond that obtained as a result of NOM adsorption by PAC. A simple estimation method for determining the adsorbed amount of competing NOM (NOM that reduces MIB adsorption) is presented based on the simplified equivalent background compound (EBC) method. Furthermore, the mechanism of adsorption competition is discussed based on results obtained with the simplified EBC method and the shell adsorption mechanism. Competing NOM, which likely comprises a small portion of NOM, adsorbs in internal pores of activated carbon particles as MIB does, thereby reducing the MIB adsorption capacity to a similar extent regardless of adsorbent particle size. SPAC application can be advantageous because enhanced NOM removal does not translate into less effective removal of MIB. Molecular size distribution data of NOM suggest that the competing NOM has a molecular weight similar to that of the target compound.  相似文献   

4.
Adsorption onto granular ferric hydroxide (GFH) with subsequent in-situ regeneration is studied as a new process for natural organic matter (NOM) removal from groundwater. Adsorbent equilibrium loadings of 10-30 mgDOC g(-1)GFH(-1) are obtained, whereas the non-adsorbable DOC fraction amounts to 1.5 mgL(-1) for all investigated groundwaters. The larger and UV-active NOM fractions (mainly fulvic acids) are well adsorbed while the smaller molecular fractions are poorly or not adsorbed. However, kinetic studies show that the smaller and medium-sized fulvic acids are removed first. The equilibrium is strongly dependent on pH but only weakly on ionic strength, pointing to ligand exchange as the dominant adsorption mechanism. With regard to NOM structure, prerequisites for adsorption onto GFH are both a minimum number of functional groups and a molecular size small enough to enter the GFH pores. NOM breakthrough curves are successfully simulated using the LDF model (homogeneous surface diffusion model (HSDM) with linear driving force approach for surface diffusion) and experimentally determined mass transfer coefficients. Regeneration of loaded GFH is possible either by use of NaOH or oxidatively by H(2)O(2). The optimal quantities and concentrations are determined.  相似文献   

5.
Zhang T  Lu J  Ma J  Qiang Z 《Water research》2008,42(6-7):1563-1570
This study comparatively investigated ozonation and synthetic goethite-catalyzed ozonation of individual natural organic matter (NOM) fractions in terms of ozone consumption, dissolved organic carbon (DOC) and UV-absorbance reduction, molecular weight (MW) distribution, and formation of low-MW oxidation by-products. Hydrophobic acid and neutral (HOA and HON) and hydrophilic acid and base (HIA and HIB) were four major NOM fractions isolated from a filtered river water; so ozonation and catalytic ozonation were carried out on these fractions. Results indicate that in comparison to ozonation alone, catalytic ozonation can enhance ozone consumption, UV(254) and DOC reduction, fragmentation of fraction components with MW>3000Da, and formation of oxalic acid for these fractions under normal reaction conditions commonly adopted in water treatment plants. In addition, catalytic ozonation can enhance aldehydes formation and increase the percentage of easy biodegradable organic carbon compared with ozonation alone for HIA and HIB, but exert much less effect on these items for HOA and HON.  相似文献   

6.
Bose P  Reckhow DA 《Water research》2007,41(7):1516-1524
Natural organic matter (NOM) was extracted from a moderately colored, eutrophic surface water source (Forge Pond, Granby, MA), and fractionated into quasi-homogeneous fractions. Fulvic acid (FA) and hydrophilic neutrals (HN) were the two most abundant NOM fractions that were isolated. Adsorption affinity of the isolated NOM fractions on preformed aluminum hydroxide flocs increased with increase in specific organic charge of the fractions, except for the two most highly charged fractions, FA and hydrophilic acids (HAA), which showed less adsorption affinity than expected based on their specific organic charge. Prior ozonation of FA and HN fractions resulted in a decline and an increase, respectively, in their adsorption affinity on aluminum hydroxide surface. Prior ozonation of Forge Pond raw water resulted in a progressive decline in dissolved organic carbon (DOC) removal by alum coagulation with increase in ozone dose. It appeared that ozone applied to raw water reacted preferentially with the humic fraction of NOM, resulting in the detrimental effects of ozonation on subsequent NOM removal by alum coagulation being magnified. Forge Pond raw water was pre-coagulated to remove humic substances. Ozonation of the pre-coagulated water demonstrated the beneficial effects of ozonation on the removal of non-humic NOM through alum coagulation. A strategy for staged coagulation with intermediate ozonation was proposed for waters containing both humic and non-humic NOM for maximum DOC and specific UV absorbance at 254nm (SUVA) removal.  相似文献   

7.
O3/H2O2艺去除饮用水中2-MIB的效能与机制   总被引:1,自引:0,他引:1  
以2-甲基异莰醇(MIB)为嗅味物质的代表物,采用过氧化氢/臭氧氧化(O3/H2O2)工艺去除水中嗅味物质,考察了O3/H2O2工艺对水中2一MIB的去除效能与主导作用机制。研究表明,投加H2O2显著提高了单独0,氧化对2-MIB的去除效能,H2O2与O3最佳物质的量比为0.3:1,且2-MIB去除效果随pH值的升高而升高。叔丁醇对2-MIB的去除表现出显著的抑制作用,在O3氧化2-MIB过程中,除O3分子氧化2-MIB外,O3在水中自分解产生的强氧化性的羟基自由基(HO·)也具有协同氧化作用。不同浓度的天然有机物(NOM)对2-MIB去除效果的影响不同,较低浓度的NOM促进了2-MIB的去除,但随着其浓度的升高,2-MIB去除率明显降低。O3/H2O2工艺对水中2-MIB表现出良好的去除效果,是强化去除水中2-MIB等致臭微量有机物的重要工艺。  相似文献   

8.
The adsorption properties of water-dissolved ozone on high silica zeolites were investigated. Adsorbed ozone was desorbed almost reversibly. The adsorption equilibrium relations were described by a linear expression written as q=betaC, where q is the amount adsorbed, C is the equilibrium concentration and beta is the equilibrium constant. Also, the beta values were strongly dependent on the SiO(2)/Al(2)O(3) ratio (mol/mol) and on the pore structure of the high silica zeolites. The larger the SiO(2)/Al(2)O(3) ratio, the larger the value of beta. ZSM-5 (SiO(2)/Al(2)O(3) ratio: 3000), which gave the highest adsorption capacity of water-dissolved ozone, was able to highly concentrate water-dissolved ozone on the adsorbent. The decomposition behavior of adsorbed ozone was also investigated. Ozone adsorbed on high silica zeolite was observed to be a little more stable than ozone existing in bulk water. The decomposition rate was independent of SiO(2)/Al(2)O(3) ratios in the range of 30-3000 or a solution pH in the range of 4-6.  相似文献   

9.
Zoschke K  Engel C  Börnick H  Worch E 《Water research》2011,45(15):4544-4550
The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption.Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions.The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration.  相似文献   

10.
The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O3 yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m−3 and without the risk of the formation of nitrite or bromate above the maximum contaminant level.  相似文献   

11.
Liu G  Zhang X  Talley JW  Neal CR  Wang H 《Water research》2008,42(8-9):2309-2319
The effect of natural organic matter (NOM) on arsenic adsorption by a commercial available TiO(2) (Degussa P25) in various simulated As(III)-contaminated raw waters was examined. Five types of NOM that represent different environmental origins were tested. Batch adsorption experiments were conducted under anaerobic conditions and in the absence of light. Either with or without the presence of NOM, the arsenic adsorption reached steady-state within 1h. The presence of 8 mg/L NOM as C in the simulated raw water, however, significantly reduced the amount of arsenic adsorbed at the steady-state. Without NOM, the arsenic adsorption increased with increasing solution pH within the pH range of 4.0-9.4. With four of the NOMs tested, the arsenic adsorption firstly increased with increasing pH and then decreased after the adsorption reached the maximum at pH 7.4-8.7. An appreciable amount of arsenate (As(V)) was detected in the filtrate after the TiO(2) adsorption in the simulated raw waters that contained NOM. The absolute amount of As(V) in the filtrate after TiO(2) adsorption was pH dependent: more As(V) was presented at pH>7 than that at pH<7. The arsenic adsorption in the simulated raw waters with and without NOM were modelled by both Langmuir and Frendlich adsorption equations, with Frendlich adsorption equation giving a better fit for the water without NOM and Langmuir adsorption equation giving a better fit for the waters with NOM. The modelling implies that NOM can occupy some available binding sites for arsenic adsorption on TiO(2) surface. This study suggests that in an As(III)-contaminated raw water, NOM can hinder the uptake of arsenic by TiO(2), but can facilitate the As(III) oxidation to As(V) at TiO(2) surface under alkaline conditions and in the absence of O(2) and light. TiO(2) thus can be used in situ to convert As(III) to the less toxic As(V) in NOM-rich groundwaters.  相似文献   

12.
This work elucidates the applicability of our newly developed adsorptive ozonation process for the decomposition of 2-methylisoborneol (MIB), a typical taste and odor chemical, without the formation of possibly carcinogenic bromate ions. First, zeolite adsorbents were screened for their ability to adsorb MIB with a batch-type adsorption experimental apparatus and a flow-type decomposition experimental apparatus included an adsorbent-packed column. The USY zeolite with the highest silica to alumina ratio (SiO(2)/Al(2)O(3) molar ratio=70) showed the best performance as an adsorbent. Using this adsorbent, an ozonation experiment on an MIB solution including bromide ions was performed under various retention times using the flow-type apparatus. As a result, sufficient decomposition of MIB was achieved with preventing bromate formation.  相似文献   

13.
Effects of pre-ozonation on the removal of THM precursors by coagulation   总被引:2,自引:0,他引:2  
Pre-ozonation in combination with enhanced coagulation was used to remove NOM from lake water as to control the formation of disinfection by-products, DBPs. The effect of the hydrophobicity/hydrophilicity nature of NOM on the performance of the combined pre-ozonation and coagulation process was studied. The hydrophilicity/hydrophobicity property of NOM was characterized in terms of mass distribution of the phydrophilic and the hydrophobilic fractions of NOM. The optimal condition for the combined pre-ozonation-coagulation was established: pH = ca. 9.0 and ozone dose = 0.45 mg-O3/mg-DOC. Under the optimal condition, it was able to achieve ∼ 60% of THMFP removal. In terms of THMPF, results also indicated that the distribution between the hydrophilic and the hydrophobic fractions of NOM was 57.3 and 98.7 µg-THMFP/mg-DOC, respectively. Ozonation alters the structures and characteristics of NOM thereby affecting the coagulation effectiveness. Pre-ozonation was effective in removing the hydrophobic NOM, with a decrease of THMFP by ∼ 20% versus ∼ 10% for the hydrophilic fraction. The dosage of coagulant also governed DOC removal. The removal of hydrophobic and hydrophilic NOM were in the range of 27-41 and 2.5-22.7%, respectively at alum dosage of 0.41-1.65 (in Al/DOC) and 0.41-1.65 (in Al/DOC) and ozone dose of 0.58-2.93, mg/mg respectively. The adsorption characteristics of the hydrophilic and the hydrophobic fractions of NOM on aluminum hydroxide (from coagulant alum) were studied. Results indicated that the modified Langmuir isotherm of competitive adsorption was able to describe the adsorption of NOM onto hydrous aluminum hydroxide formed during alum coagulation of the lake waters.  相似文献   

14.
Qi S  Schideman LC 《Water research》2008,42(13):3353-3360
Design and analysis of activated carbon processes in water treatment often requires the adsorption isotherm for dissolved natural organic matter (NOM). Of the isotherm models available, the Summers and Roberts (SR) equation, capable of describing the adsorbent dose effect with the fewest parameters, has been successfully used to normalize NOM isotherm data. In this study, we show that the adsorbent dose in the SR equation can be eliminated as an intermediate variable and the initial concentration effect on NOM adsorption is then described explicitly. Comparing with the original SR equation, the derived isotherm equation is in a form more amenable to analysis. To ensure that the prediction is physically attainable, we introduced the limiting adsorption capacity by taking the adsorbent pore volume and size exclusion into consideration. Subsequently, we develop a simple relationship that can be used to determine the minimum adsorbent usage required for any desirable level of treatment. By comparing with extensive isotherm data previously published by Li et al. [2003a. Polydisperse adsorbability composition of several natural and synthetic organic matrices. J. Colloid Interface Sci. 265(2), 265-275], we demonstrated that the isotherm equation derived herein yields predictions that agree with the much more complicated fictive component-ideal adsorbed solution theory (IAST)-based model for NOM from different sources and over a range of initial concentrations.  相似文献   

15.
Rossner A  Knappe DR 《Water research》2008,42(8-9):2287-2299
Widespread use of the fuel additive methyl tertiary-butyl ether (MTBE) has led to frequent MTBE detections in North American and European drinking water sources. The overall objective of this research was to evaluate the effectiveness of a silicalite zeolite, a carbonaceous resin, and a coconut-shell-based granular activated carbon (GAC) for the removal of MTBE from water. Isotherm and short bed adsorber tests were conducted in ultrapure water and river water to obtain parameters describing MTBE adsorption equilibria and kinetics and to quantify the effect of natural organic matter (NOM) on MTBE adsorption. Both the silicalite zeolite and the carbonaceous resin exhibited larger MTBE adsorption uptakes than the tested GAC. Surface diffusion coefficients describing intraparticle MTBE mass transfer rates were largest for the GAC and smallest for the carbonaceous resin. Pilot tests were conducted to verify MTBE breakthrough curve predictions obtained with the homogeneous surface diffusion model and to evaluate the effect of NOM preloading on packed bed adsorber performance. Results showed that GAC was the most cost-competitive adsorbent when considering adsorbent usage rate only; however, the useful life of an adsorber containing silicalite zeolite was predicted to be approximately 5-6 times longer than that of an equally sized adsorber containing GAC. Pilot column results also showed that NOM preloading did not impair the MTBE removal efficiency of the silicalite zeolite. Thus, it may be possible to regenerate spent silicalite with less energy-intensive methods than those required to regenerate GAC.  相似文献   

16.
This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this.  相似文献   

17.
Ebie K  Li F  Azuma Y  Yuasa A  Hagishita T 《Water research》2001,35(1):167-179
Adsorption isotherms of organic micropollutants in coexistence with natural organic matter (NOM) were analyzed to evaluate the impacts of pore size distribution of activated carbon (AC) on the competition effects of the NOM. Single solute adsorption experiments and simultaneous adsorption experiments with NOM contained in a coagulation-pretreated surface water were performed for four agricultural chemicals and three coal-based activated carbons (ACs) having different pore distributions. The results showed that, for all the carbons used, the adsorption capacity of the chemicals was reduced distinctly in the presence of NOM. Such a reduction was more apparent for AC with a larger portion of small pores suitable for the adsorption of small organic molecules and for the agricultural chemicals with a more hydrophilic nature. Ideal adsorbed solution theory (IAST) incorporated with the Freundlich isotherm expression (IAST-Freundlich model) could not interpret the impact of NOM on the adsorption capacity of the chemicals unless a pore blockage effect caused by the adsorption of NOM was also considered. By taking into account this effect, the adsorption isotherm of the chemicals in the presence of NOM was well described, and the capacity reduction caused by the NOM was quantitatively assessed from the viewpoints of the site competition and the pore blockage. Analytical results clearly indicated that pore blockage was an important competition mechanism that contributed to 10-99% of the total capacity reductions of the chemicals, the level depended greatly on the ACs, the chemicals and the equilibrium concentrations, and could possibly be alleviated by broadening the pore size distributions of the ACs to provide a large volume percentage for pores with sizes above 30 A.  相似文献   

18.
水源藻类和底泥对典型嗅味物质的耦合影响   总被引:1,自引:0,他引:1  
通过模拟试验研究了铜绿微囊藻、底泥以及两者的组合对水源产生典型嗅味物质——2-甲基异莰醇(2-MIB)的影响。结果表明,微囊藻在生长过程中不产生2-MIB;底泥中积存了大量的2-MIB,在厌氧状态下其会释放到水中,同时扰动也会导致底泥中的2-MIB发生快速释放;底泥能够促进微囊藻的生长,而微囊藻进入衰退期后会导致水体产生厌氧状态,促使底泥释放出2-MIB,水中的2-MIB浓度达到了594 ng/L。这项研究对于掌握湖泊水源中典型嗅味物质的产生规律以及采取措施保障供水安全具有重要的指导作用。  相似文献   

19.
The generation of disinfection by-products during water treatment can be controlled by reducing the levels of precursor species prior to the chlorination step. The Natural Organic Matter (NOM) is the principal organic precursor and conventional removal of pollutants such as coagulation, flocculation and filtration do not guarantee the total NOM removal. In this study the degradation of NOM model compounds (dihydroxy-benzene) as well as the removal of NOM from river water via photo-Fenton process in a CPC solar photo-reactor is presented. The effect of solar activated photo-Fenton reagent at pH 5.0 before and after a slow sand filtration (SSF) in waters containing natural iron species is investigated and the details reported. The results showed that the total transformation of dihydroxy-benzene compounds along a mineralization higher than 80% was obtained. The mineralization of the organic compounds dissolved in natural water was higher than in Milli-Q water, suggesting that the aqueous organic and inorganic components (metals, humic acids and photoactive species) positively affect the photocatalytic process. When 1.0 mg/L of Fe3+ is added to the system, the photo-Fenton degradation was improved. Therefore the photo-Fenton reagent could be an interesting complement to other processes for NOM removal. Comparing the response of two rivers as media for the organic compounds degradation it was observed that the NOM photo-degradation rate depends of the water composition.  相似文献   

20.
S.E. Herbes 《Water research》1977,11(6):493-496
Quantities of polycyclic aromatic hydrocarbons (PAH), some of which are carcinogens, enter natural waters in effuents of coke production and other high-temperature industrial pyrolysis processes. Because of their low water solubilities. PAH compounds are generally considered to occur in particulate form in lakes and rivers. However, present studies of 14C-anthracene adsorption by autoclaved yeast cells indicated that significant fractions of both dissolved and particulate forms of PAH may exist in natural waters. Quantities of anthracene adsorbed exceeded values for PAH adsorption onto mineral surfaces by more than an order of magnitude: suspended organic material may thus be more important than mineral particles in adsorption of PAH compounds. Adsorption was highly dependent upon the yeast cell concentration, and varied widely through the range of suspended organic solids normally encountered in natural waters. The heat of adsorption (5.2 kcal/mole) was characteristic of a physical adsorptive process. Because ecological effects and pathways of dissolved and particulate PAH may differ, adsorptive partitioning may be important in determining PAH hazards to higher organisms in aquatic food chains, and ultimately to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号