首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scalar magnetometer payload has been developed and integrated into a two‐man portable autonomous underwater vehicle (AUV) for geophysical and archeological surveys. The compact system collects data from a Geometrics microfabricated atomic magnetometer, a total‐field atomic magnetometer. Data from the sensor is both stored for post‐processing and made available to an onboard autonomy engine for real‐time sense and react behaviors. This system has been characterized both in controlled laboratory conditions and at sea to determine its performance limits. Methodologies for processing the magnetometer data to correct for interference and error introduced by the AUV platform were developed to improve sensing performance. When conducting seabed surveys, detection and characterization of targets of interest are performed in real‐time aboard the AUV. This system is used to drive both single‐ and multiple‐vehicle autonomous target reacquisition behaviors. The combination of on‐board target detection and autonomous reacquire capability is found to increase the effective survey coverage rate of the AUV‐based magnetic sensing system.  相似文献   

2.
基于单目视觉的水下机器人管道检测   总被引:1,自引:0,他引:1  
唐旭东  庞永杰  张赫  曾文静  李晔 《机器人》2010,32(5):592-600
以单目CCD摄像机为视觉传感器,利用视觉系统测量方法获得水下管道的导航信息,并在此基础上建立了一个用于水下机器人的水下管道检测系统. 按照数据结构的抽象程度,将系统中传递的数据信息分为由低至高4个层次,描述了各层次内容,详细介绍了水下机器人管道检测方法. 为了提高系统的准确性和实时性,采用了动态窗口管道检测方法.在室内实验水池中,以某型号水下机器人为试验载体,进行了多次管道跟踪试验,验证了系统的可行性和有效性.  相似文献   

3.
We present a novel method for planning coverage paths for inspecting complex structures on the ocean floor using an autonomous underwater vehicle (AUV). Our method initially uses a 2.5‐dimensional (2.5D) prior bathymetric map to plan a nominal coverage path that allows the AUV to pass its sensors over all points on the target area. The nominal path uses a standard mowing‐the‐lawn pattern in effectively planar regions, while in regions with substantial 3D relief it follows horizontal contours of the terrain at a given offset distance. We then go beyond previous approaches in the literature by considering the vehicle's state uncertainty rather than relying on the unrealistic assumption of an idealized path execution. Toward that end, we present a replanning algorithm based on a stochastic trajectory optimization that reshapes the nominal path to cope with the actual target structure perceived in situ. The replanning algorithm runs onboard the AUV in real time during the inspection mission, adapting the path according to the measurements provided by the vehicle's range‐sensing sonars. Furthermore, we propose a pipeline of state‐of‐the‐art surface reconstruction techniques we apply to the data acquired by the AUV to obtain 3D models of the inspected structures that show the benefits of our planning method for 3D mapping. We demonstrate the efficacy of our method in experiments at sea using the GIRONA 500 AUV, where we cover part of a breakwater structure in a harbor and an underwater boulder rising from 40 m up to 27 m depth.  相似文献   

4.
Dissolved oxygen (DO) concentration is a key indicator of the health and productivity of an aquatic ecosystem. This paper presents a new method for high‐resolution characterization of DO as a function of both space and time. The implementation of a new oxygen optode in an Iver2 autonomous underwater vehicle (AUV) is described, which enables the system to measure both absolute oxygen concentration and percentage saturation. Also described are details of AUV missions in Hopavågen Bay, Norway, which consisted of a series of repeated undulating lawnmower patterns that covered the bay. Through offline postprocessing of data, sensor characteristic models were developed, as well as a 3D lattice time series model. The model was constructed by estimating DO at each 3D lattice node location using a 1D Kalman filter that fused local measurements obtained with the AUV. By repeating model construction for several missions that spanned 24 h, estimates of DO as a function of space and time were calculated. Results demonstrated (1) the AUVs ability to repeatedly gather high‐spatial‐resolution data (2) significant spatial and temporal variation in DO in the water body investigated, and (3) that a 3D model of DO provides better estimates of total DO in a volume than extrapolating from only a single 2D plane. Given the importance of oxygen within an ecosystem, this new method of estimating the quantity of DO per volume has the potential to become a reliable test for the health of an underwater ecosystem. Also, it can be refined for detecting and monitoring a range of soluble gases and dispersed particles in aquatic environments, such as dissolved O2 and CO2 around production facilities such as fish farms, or dispersed hydrocarbons and other pollutants in fragile ecosystems. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
蔡文郁  张美燕 《传感技术学报》2016,29(10):1589-1595
由于水下传感器节点的水声通信距离有限、价格昂贵,水下传感器网络中一般采用稀疏方式部署,因此很难保证整体网络的连通性及数据采集效率。自主水下航行器AUV(Autonomous Underwater Vehicle)作为天然的移动数据采集平台,可以弥补固定Sink节点数据采集方式的缺陷。提出了一种基于移动AUV的水下传感网移动数据收集机制。以AUV覆盖区域内的传感器节点作为临时Sink节点,其他传感器节点以临时Sink节点为根节点,采用最小生成树MST(Minimum Spanning Tree)方法将传感数据传输到这些临时Sink节点,然后通过临时Sink节点将汇聚数据传输给AUV。随着AUV的自主移动轨迹,水下传感网的传感数据都能简单高效地被收集起来。仿真结果验证了该方法在保证网络能耗的前提下提高了数据采集效率。  相似文献   

6.
This paper presents a teach‐and‐repeat path‐following method for an autonomous underwater vehicle (AUV) navigating long distances in environments where external navigation aides are denied. This method utilizes sonar images to construct a series of reference views along a path, stored as a topological map. The AUV can then renavigate along this path, either to return to the start location or to repeat the route. Utilizing unique assumptions about the sonar image‐generation process, this system exhibits robust image‐matching capabilities, providing observations to a discrete Bayesian filter that maintains an estimate of progress along the path. Image‐matching also provides an estimate of offset from the path, allowing the AUV to correct its heading and effectively close the gap. Over a series of field trials, this system demonstrated online control of an AUV in the ocean environment of Holyrood Arm, Newfoundland and Labrador, Canada. The system was implemented on an International Submarine Engineering Ltd. Explorer AUV and performed multiple path completions over both a 1 and 5 km track. These trials illustrated an AUV operating in a fully autonomous mode, in which navigation was driven solely by sensor feedback and adaptive control. Path‐following performance was as desired, with the AUV maintaining close offset to the path.  相似文献   

7.
灰色动态预测在AUV传感器故障诊断中的应用   总被引:2,自引:0,他引:2  
针对自主水下机器人(AUV)传感器故障诊断中样本数据少、随机性强、实时性要求高的特点,将灰色动态预测模型的建模原理引用到AUV传感器的故障诊断中。在对传感器进行数据滤波、小样本灰色建模与灰色动态预测的基础上,可以实现AUV传感器的实时故障诊断。文章详细阐述了基于灰色动态预测的传感器故障诊断的具体实现方法和步骤,对AUV传感器中典型的四种故障模式进行了仿真研究。结果表明该方法能快速、准确地诊断出传感器故障,并且在传感器发生故障后的一段时间内能够实现信号恢复。  相似文献   

8.
对于远程自主式水下航行器,控制系统中传感器的实时故障诊断和容错控制是一项关键技术;采用BP神经网络设计了一种由主网络和局部网络构成的两级神经网络故障诊断算法,其中主网络用于水下航行器控制系统中传感器的故障检测,一旦发现有故障发生,则通过局部网络完成对故障的识别,因此可以减少运算量,提高故障诊断的实时性;通过仿真研究验证了该方法的有效性,为水下航行器控制系统的故障诊断及容错研究提出了一条新的途径。  相似文献   

9.
A new sensor‐based homing integrated guidance and control law is presented to drive an underactuated autonomous underwater vehicle (AUV) toward a fixed target, in 3‐D, using the information provided by an ultra‐short baseline (USBL) positioning system. The guidance and control law is first derived at a kinematic level, expressed on the space of the time differences of arrival (TDOAs), as directly measured by the USBL sensor, and assuming the plane wave approximation. Afterwards, the control law is extended for the dynamics of an underactuated AUV resorting to backstepping techniques. The proposed Lyapunov‐based control law yields almost global asymptotic stability (AGAS) in the absence of external disturbances and is further extended, keeping the same properties, to the case where known ocean currents affect the motion of the vehicle. Simulations are presented and discussed that illustrate the performance and behavior of the overall closed‐loop system in the presence of realistic sensor measurements and actuator saturation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the implementation of an intelligent navigation system, based on the integrated use of the global positioning system (GPS) and several inertial navigation system (INS) sensors, for autonomous underwater vehicle (AUV) applications. A simple Kalman filter (SKF) and an extended Kalman filter (EKF) are proposed to be used subsequently to fuse the data from the INS sensors and to integrate them with the GPS data. The paper highlights the use of fuzzy logic techniques to the adaptation of the initial statistical assumption of both the SKF and EKF caused by possible changes in sensor noise characteristics. This adaptive mechanism is considered to be necessary as the SKF and EKF can only maintain their stability and performance when the algorithms contain the true sensor noise characteristics. In addition, fault detection and signal recovery algorithms during the fusion process to enhance the reliability of the navigation systems are also discussed herein. The proposed algorithms are implemented to real experimental data obtained from a series of AUV trials conducted by running the low-cost Hammerhead AUV, developed by the University of Plymouth and Cranfield University.  相似文献   

11.
During the Gulf of Mexico Oil Spill Response Scientific Survey on the National Oceanic and Atmospheric Administration Ship Gordon Gunter Cruise GU‐10‐02 (27 May–4 June 2010), a Monterey Bay Aquarium Research Institute autonomous underwater vehicle (AUV) was deployed to make high‐resolution surveys of the water column in targeted areas. There were 10 2‐liter samplers on the AUV for acquiring water samples. An essential challenge was how to autonomously trigger the samplers when peak hydrocarbon signals were detected. In ship hydrocasts (measurements by lowered instruments) at a site to the southwest of the Deepwater Horizon wellhead, the hydrocarbon signal showed a sharp peak between 1,100‐ and 1,200‐m depths, suggesting the existence of a horizontally oriented subsurface hydrocarbon plume. In response to this finding, we deployed the AUV at this site to make high‐resolution surveys and acquire water samples. To autonomously trigger the samplers at peak hydrocarbon signals, we modified an algorithm that was previously developed for capturing peaks in a biological thin layer. The modified algorithm still uses the AUV's sawtooth (i.e., yo‐yo) trajectory in the vertical dimension and takes advantage of the fact that in one yo‐yo cycle, the vehicle crosses the horizontal plume (i.e., the strong‐signal layer) twice. On the first crossing, the vehicle detects the peak and logs the corresponding depth (after correcting for the detection delay). On the second crossing, a sampling is triggered when the vehicle reaches the depth logged on the first crossing, based on the assumption that the depth of the horizontal oil layer does not vary much between two successive crossings that are no more than several hundred meters apart. In this paper, we present the algorithm and its performance in an AUV mission on 3 June 2010 in the Gulf of Mexico. In addition, we present an improvement to the algorithm and the corresponding results from postprocessing the AUV mission data. © 2011 Wiley Periodicals, Inc. *
  • 1 This article is a US Government work and, as such, is in the public domain of the United States of America.
  •   相似文献   

    12.
    This paper presents a prototype system that enables an autonomous underwater vehicle (AUV) to autonomously track and follow a shark that has been tagged with an acoustic transmitter. The AUV's onboard processor handles both real‐time estimation of the shark's two‐dimensional planar position, velocity, and orientation states, as well as a straightforward control scheme to drive the AUV toward the shark. The AUV is equipped with a stereo‐hydrophone and receiver system that detects acoustic signals transmitted by the acoustic tag. The particular hydrophone system used here provides a measurement of relative bearing angle to the tag, but it does not provide the sign (+ or ?) of the bearing angle. Estimation is accomplished using a particle filter that fuses bearing measurements over time to produce a state estimate of the tag location. The particle filter combined with a heuristic‐based controller allows the system to overcome the ambiguity in the sign of the bearing angle. The state estimator and control scheme were validated by tracking both a stationary tag and a moving tag with known positions. Offline analysis of these data showed that state estimation can be improved by optimizing diffusion parameters in the prediction step of the filter, and considering signal strength of the acoustic signals in the resampling stage of the filter. These experiments revealed that state estimate errors were on the order of those obtained by current long‐distance shark‐tracking methods, i.e., manually driven boat‐based tracking systems. Final experiments took place in SeaPlane Lagoon, Los Angeles, where a 1‐m leopard shark (Triakis semifasciata) was caught, tagged, and released before being autonomously tracked and followed by the proposed AUV system for several hours. © 2013 Wiley Periodicals, Inc.  相似文献   

    13.
    基于自适应交互多模型算法的传感器故障诊断   总被引:1,自引:0,他引:1  
    在标准的交互多模型算法中,模型切换概率和模型噪声方差都假定为先验信息,但是系统的模型信息一般隐含在当前的量测信息中,因此本文提出一种在线辨识模型切换概率和噪声方差的自适应交互多模型算法,在建立传感器的全局故障和局部故障模型的基础上,对自主水下航行器多个传感器的局部故障与全局故障进行了诊断.在仿真过程中发现,与一般的多模型自适应估计方法(MMAE)相比,此方法算法简单,能够更加准确可靠地诊断故障.  相似文献   

    14.
    Recent advances in Autonomous Underwater Vehicle (AUV) technology have facilitated the collection of oceanographic data at a fraction of the cost of ship‐based sampling methods. Unlike oceanographic data collection in the deep ocean, operation of AUVs in coastal regions exposes them to the risk of collision with ships and land. Such concerns are particularly prominent for slow‐moving AUVs since ocean current magnitudes are often strong enough to alter the planned path significantly. Prior work using predictive ocean currents relies upon deterministic outcomes, which do not account for the uncertainty in the ocean current predictions themselves. To improve the safety and reliability of AUV operation in coastal regions, we introduce two stochastic planners: (a) a Minimum Expected Risk planner and (b) a risk‐aware Markov Decision Process, both of which have the ability to utilize ocean current predictions probabilistically. We report results from extensive simulation studies in realistic ocean current fields obtained from widely used regional ocean models. Our simulations show that the proposed planners have lower collision risk than state‐of‐the‐art methods. We present additional results from field experiments where ocean current predictions were used to plan the paths of two Slocum gliders. Field trials indicate the practical usefulness of our techniques over long‐term deployments, showing them to be ideal for AUV operations.  相似文献   

    15.
    提出一种新的基于传感器信息的自治式水下机器人(AUV)动态避障方法。介绍了传感器的工作原理。通过栅格法把传感器采集的AUV运行环境障碍信息进行合理描述,并预测动态障碍物的速度,保证AUV能够根据传感器信息躲避障碍物,达到航行要求。最后,通过仿真实验对机器人自主避障能力进行了验证。  相似文献   

    16.
    提高故障诊断能力对于确保水下机器人AUV系统的稳定运行具有重要意义。针对水下机器人推进器系统,提出一种基于离群点检测的AUV故障检测方法。首先,将传感器采集的数据进行灰色预测处理;然后,提出了一种结合K-mean和DBSCAN的改进迭代聚类(Iterative K-mean DBSCAN,IKD)算法进行离群点检测;最后,与K-mean和DBSCAN算法相比,仿真实验结果表明基于灰色预测和KID离群点检测算法的故障检测准确率高,能够有效地实现水下机器人AUV的无监督故障诊断。  相似文献   

    17.
    Coastal upwelling is a wind‐driven ocean process that brings cooler, saltier, and nutrient‐rich deep water upward to the surface. The boundary between the upwelling water and the normally stratified water is called the “upwelling front.” Upwelling fronts support enriched phytoplankton and zooplankton populations, thus they have great influences on ocean ecosystems. Traditional ship‐based methods for detecting and sampling ocean fronts are often laborious and very difficult, and long‐term tracking of such dynamic features is practically impossible. In our prior work, we developed a method of using an autonomous underwater vehicle (AUV) to autonomously detect an upwelling front and track the front's movement on a fixed latitude, and we applied the method in scientific experiments. In this paper, we present an extension of the method. Each time the AUV crosses and detects the front, the vehicle makes a turn at an oblique angle to recross the front, thus zigzagging through the front to map the frontal zone. The AUV's zigzag tracks alternate in northward and southward sweeps, so as to track the front as it moves over time. This way, the AUV maps and tracks the front in four dimensions—vertical, cross‐front, along‐front, and time. From May 29 to June 4, 2013, the Tethys long‐range AUV ran the algorithm to map and track an upwelling front in Monterey Bay, CA, over five and one‐half days. The tracking revealed spatial and temporal variabilities of the upwelling front.  相似文献   

    18.
    协同定位是共融机器人研究领域的重要问题.协同定位方案的制定受限于机器人间信息交互的能力.针对长时间通讯中断时多自治水下航行器(AUV)协同定位精度明显下降的问题,借鉴同时定位与制图(SLAM)方法,提出了基于FastSLAM框架的同时定位与跟踪(SLAT)算法.将主AUV视为非合作目标,在从AUV上建立起一个关于主AUV的运动估计器,利用从AUV上声呐传感器实时获取的相对量测信息,在对主AUV运动状态估计的同时,完成对从AUV自定位精度的提升.仿真实验结果表明,在长时间通讯中断发生的条件约束下,相比于传统的航位推算方法,所提出的SLATF1.0和2.0算法能够有效减小定位误差,2.0算法对于探测精度变化等因素的影响具有更好适应性.  相似文献   

    19.
    A key challenge in autonomous mobile manipulation is the ability to determine, in real time, how to safely execute complex tasks when placed in unknown or changing world. Addressing this issue for Intervention Autonomous Underwater Vehicles (I‐AUVs), operating in potentially unstructured environment is becoming essential. Our research focuses on using motion planning to increase the I‐AUVs autonomy, and on addressing three major challenges: (a) producing consistent deterministic trajectories, (b) addressing the high dimensionality of the system and its impact on the real‐time response, and (c) coordinating the motion between the floating vehicle and the arm. The latter challenge is of high importance to achieve the accuracy required for manipulation, especially considering the floating nature of the AUV and the control challenges that come with it. In this study, for the first time, we demonstrate experimental results performing manipulation in unknown environment. The Multirepresentation, Multiheuristic A* (MR‐MHA*) search‐based planner, previously tested only in simulation and in a known a priori environment, is now extended to control Girona500 I‐AUV performing a Valve‐Turning intervention in a water tank. To this aim, the AUV was upgraded with an in‐house‐developed laser scanner to gather three‐dimensional (3D) point clouds for building, in real time, an occupancy grid map (octomap) of the environment. The MR‐MHA* motion planner used this octomap to plan, in real time, collision‐free trajectories. To achieve the accuracy required to complete the task, a vision‐based navigation method was employed. In addition, to reinforce the safety, accounting for the localization uncertainty, a cost function was introduced to keep minimum clearance in the planning. Moreover a visual‐servoing method had to be implemented to complete the last step of the manipulation with the desired accuracy. Lastly, we further analyzed the approach performance from both loose‐coupling and clearance perspectives. Our results show the success and efficiency of the approach to meet the desired behavior, as well as the ability to adapt to unknown environments.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号