首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. At the core of our method is a finite element discretization of PDEs on point surfaces. This discretization is based on the local assembly of PDE-specific mass and stiffness matrices, using a local point coupling computation. Point couplings are computed using a local tangent plane construction and a local Delaunay triangulation of point neighborhoods. The definition of tangent planes relies on moment-based computation with proven scaling and stability properties. Once local stiffness matrices are obtained, we are able to easily assemble global matrices and efficiently solve the corresponding linear systems by standard iterative solvers. We demonstrate our framework by several types of PDE-based surface processing applications, such as segmentation, texture synthesis, bump mapping, and geometric fairing.  相似文献   

2.
3.
We propose a method for non-uniform reconstruction of 3D scalar data. Typically, radial basis functions, trigonometric polynomials or shift-invariant functions are used in the functional approximation of 3D data. We adopt a variational approach for the reconstruction and rendering of 3D data. The principle idea is based on data fitting via thin-plate splines. An approximation by B-splines offers more compact support for fast reconstruction. We adopt this method for large datasets by introducing a block-based reconstruction approach. This makes the method practical for large datasets. Our reconstruction will be smooth across blocks. We give reconstruction measurements as error estimations based on different parameter settings and also an insight on the computational effort. We show that the block size used in reconstruction has a negligible effect on the reconstruction error. Finally we show rendering results to emphasize the quality of this 3D reconstruction technique.  相似文献   

4.
We introduce a method for surface reconstruction from point sets that is able to cope with noise and outliers. First, a splat-based representation is computed from the point set. A robust local 3D RANSAC-based procedure is used to filter the point set for outliers, then a local jet surface – a low-degree surface approximation – is fitted to the inliers. Second, we extract the reconstructed surface in the form of a surface triangle mesh through Delaunay refinement. The Delaunay refinement meshing approach requires computing intersections between line segment queries and the surface to be meshed. In the present case, intersection queries are solved from the set of splats through a 1D RANSAC procedure.  相似文献   

5.
In this paper, we present a new algorithm for quad-dominant meshing of unorganized point clouds based on periodic global parameterization. Our meshing method is guided by principal directions so as to preserve the intrinsic geometric properties. We use local Delaunay triangulation to smooth the initial principal directions and adapt the global parameterization to point clouds. By optimizing the fairness measure we can find the two scalar functions whose gradients best align with the guided principal directions. To handle the redundant vertices in the iso-lines due to overlapped triangles, an approach is specially designed to clean the iso-lines. Our approach is fully automatic and applicable to a surface of arbitrary genus. We also show an application of our method in curve skeleton extraction from incomplete point cloud data.  相似文献   

6.
We propose new algebraic methods for extracting cylinders and cones from minimal point sets, including oriented points. More precisely, we are interested in computing efficiently cylinders through a set of three points, one of them being oriented, or through a set of five simple points. We are also interested in computing efficiently cones through a set of two oriented points, through a set of four points, one of them being oriented, or through a set of six points. For these different interpolation problems, we give optimal bounds on the number of solutions. Moreover, we describe algebraic methods targeted to solve these problems efficiently.  相似文献   

7.
Given a large set of unorganized point sample data, we propose a new framework for computing a triangular mesh representing an approximating piecewise smooth surface. The data may be non-uniformly distributed, noisy, and may contain holes. This framework is based on the combination of two types of surface representations, triangular meshes and T-spline level sets, which are implicit surfaces defined by refinable spline functions allowing T-junctions. Our method contains three main steps. Firstly, we construct an implicit representation of a smooth (C 2 in our case) surface, by using an evolution process of T-spline level sets, such that the implicit surface captures the topology and outline of the object to be reconstructed. The initial mesh with high quality is obtained through the marching triangulation of the implicit surface. Secondly, we project each data point to the initial mesh, and get a scalar displacement field. Detailed features will be captured by the displaced mesh. Finally, we present an additional evolution process, which combines data-driven velocities and feature-preserving bilateral filters, in order to reproduce sharp features. We also show that various shape constraints, such as distance field constraints, range constraints and volume constraints can be naturally added to our framework, which is helpful to obtain a desired reconstruction result, especially when the given data contains noise and inaccuracies.  相似文献   

8.
Milos  Amiya  Jovisa   《Pattern recognition》2008,41(8):2503-2511
Our goal is to design algorithms that give a linearity measure for planar point sets. There is no explicit discussion on linearity in literature, although some existing shape measures may be adapted. We are interested in linearity measures which are invariant to rotation, scaling, and translation. These linearity measures should also be calculated very quickly and be resistant to protrusions in the data set. The measures of eccentricity and contour smoothness were adapted from literature, the other five being triangle heights, triangle perimeters, rotation correlation, average orientations, and ellipse axis ratio. The algorithms are tested on 30 sample curves and the results are compared against the linear classifications of these curves by human subjects. It is found that humans and computers typically easily identify sets of points that are clearly linear, and sets of points that are clearly not linear. They have trouble measuring sets of points which are in the gray area in-between. Although they appear to be conceptually very different approaches, we prove, theoretically and experimentally, that eccentricity and rotation correlation yield exactly the same linearity measurements. They however provide results which are furthest from human measurements. The average orientations method provides the closest results to human perception, while the other algorithms proved themselves to be very competitive.  相似文献   

9.
对于非均匀散乱点云,多数基于区域生长方法的曲面重构往往容易出现孔洞等缺陷。针对该问题,在K邻域点集的基础上提出间接邻域点集的概念,对以点为生长对象进行区域生长的三角网格曲面重构方法进行了研究,实现三角网格曲面重构。以生长点的邻域点集为样点估算微切平面,将邻域点投影至该平面上,并按照右手定则、逆时针方向进行排序,通过拓扑正确性原则从点列中去除错误的连接点,优化局部网格,选择较好的连接点,实现网格曲面的区域生长。  相似文献   

10.
Pose estimation is a problem that occurs in many applications. In machine vision, the pose is often a 2D affine pose. In several applications, a restricted class of 2D affine poses with five degrees of freedom consisting of an anisotropic scaling, a rotation, and a translation must be determined from corresponding 2D points. A closed-form least-squares solution for this problem is described. The algorithm can be extended easily to robustly deal with outliers.  相似文献   

11.
The expanding sphere algorithm computes an alpha shape tetrahedralization of a point set. Starting with a seed tetrahedron, the circumscribing sphere is squeezed through each face until it either touches another point or exceeds a preset radius. If no point is found, that face of the tetrahedron is part of the surface of an object. If a point is found, a new tetrahedron is constructed. This process is iterated until all the faces of the tetrahedra have been processed and no more connected points can be found. If there are points left over, the process is iterated, creating additional objects. The algorithm generates a list of objects, with an alpha shape tetrahedralization and a surface triangulation for each. Any points that cannot be made part of a valid tetrahedron are also returned in the extra points list. The algorithm is efficient for uniformly distributed point sets, with a running time that is linear in the number of points for such sets. Since the operations are local, it is also robust.  相似文献   

12.
Scanning devices acquire geometric information from the surface of an object in the form of a 3D point set. Such point sets, as any data obtained by means of physical measurement, contain some noise. To create an accurate model of the scanned object, this noise should be resolved before or during the process of surface reconstruction. In this paper, we develop a statistical technique to estimate the noise in a scanned point set. The noise is represented as normal distributions with zero mean and their variances determine the amount of the noise. These distributions are estimated with a variational Bayesian method, which is known to provide more robust estimations than point estimate methods, such as maximum likelihood and maximum a posteriori. Validation experiments and further tests with real scan data show that the proposed technique can accurately estimate the noise in a 3D point set.  相似文献   

13.
Based on the classic absolute orientation technique, a new method for least-squares fitting of multiple point sets in m-dimensional space is proposed, analyzed and extended to a weighted form in this paper. This method generates a fixed point set from k corresponding original m-dimensional point sets and minimizes the mean squared error between the fixed point set and these k point sets under the similarity transformation. Experiments and interesting applications are presented to show its efficiency and accuracy.  相似文献   

14.
Surface reconstruction from cross cuts usually requires curve reconstruction from planar noisy point samples. The output curves must form a possibly disconnected 1-manifold for the surface reconstruction to proceed. This article describes an implemented algorithm for the reconstruction of planar curves (1-manifolds) out of noisy point samples of a self-intersecting or nearly self-intersecting planar curve C. C:[a,b]⊂RR 2 is self-intersecting if C(u)=C(v), uv, u,v∈(a,b) (C(u) is the self-intersection point). We consider only transversal self-intersections, i.e. those for which the tangents of the intersecting branches at the intersection point do not coincide (C′(u)≠C′(v)). In the presence of noise, curves which self-intersect cannot be distinguished from curves which nearly self-intersect. Existing algorithms for curve reconstruction out of either noisy point samples or pixel data, do not produce a (possibly disconnected) Piecewise Linear 1-manifold approaching the whole point sample. The algorithm implemented in this work uses Principal Component Analysis (PCA) with elliptic support regions near the self-intersections. The algorithm was successful in recovering contours out of noisy slice samples of a surface, for the Hand, Pelvis and Skull data sets. As a test for the correctness of the obtained curves in the slice levels, they were input into an algorithm of surface reconstruction, leading to a reconstructed surface which reproduces the topological and geometrical properties of the original object. The algorithm robustly reacts not only to statistical non-correlation at the self-intersections (non-manifold neighborhoods) but also to occasional high noise at the non-self-intersecting (1-manifold) neighborhoods.  相似文献   

15.
The existing approaches support Minkowski sums for the boundary, set-theoretic, and ray representations of solids. In this paper, we consider the Minkowski sum operation in the context of geometric modeling using real functions. The problem is to find a real function f3(X) for the Minkowski sum of two objects defined by the inequalities f1(X) ≥ 0 and f2(X) ≥ 0. We represent the Minkowski sum as a composition of other operations: the Cartesian product, resulting in a higher-dimensional object, and a mapping to the original space. The Cartesian product is realized as an intersection in the higher-dimensional space, using an R-function. The mapping projects the resulting object along n coordinate axes, where n is the dimension of the original space. We discuss the properties of the resulting function and the problems of analytic and numeric implementation, especially for the projection operation. Finally, we apply Minkowski sums to implement offsetting and metamorphosis between set-theoretic solids with curvilinear boundaries.  相似文献   

16.
The problem of isometric point-pattern matching can be modeled as inference in small tree-width graphical models whose embeddings in the plane are said to be ‘globally rigid’. Although such graphical models lead to efficient and exact solutions, they cannot generally handle occlusions, as even a single missing point may ‘break’ the rigidity of the graph in question. In addition, such models can efficiently handle point sets of only moderate size. In this paper, we propose a new graphical model that is not only adapted to handle occlusions but is much faster than previous approaches for solving the isometric point-pattern matching problem. We can match point-patterns with thousands of points in a few seconds.  相似文献   

17.
Least-squares fitting of two 3-d point sets   总被引:13,自引:0,他引:13  
Two point sets {pi} and {p'i}; i = 1, 2,..., N are related by p'i = Rpi + T + Ni, where R is a rotation matrix, T a translation vector, and Ni a noise vector. Given {pi} and {p'i}, we present an algorithm for finding the least-squares solution of R and T, which is based on the singular value decomposition (SVD) of a 3 × 3 matrix. This new algorithm is compared to two earlier algorithms with respect to computer time requirements.  相似文献   

18.
19.
针对复平面上有理型 Julia 集的控制与同步问题进行了研究。在控制方面把h 当做一个被控制的不动点,采用选择控制法来控制有理型 Julia 集,得到控制后的 Julia 集随着控制参数的增大而逐渐收缩。在同步方面采用梯度控制法来实现具有相同系统且不同参数有理型 Julia 集的同步,使得其中一个 Julia 集逐渐变化到另一个 Julia 集,并通过 MATLAB 仿真实例验证了该方法的有效性。  相似文献   

20.
针对点云特征提前取方法在多方向性分析方面的局限性,将Curvelet变换引入点云的分析,研究数据点云不同尺度曲面特征的提取方法。在数据点云分层、扩展预处理的基础上,以第二代离散Curvelet变换分析数据点云,采用软硬阈值折衷法,对表示数据点云边缘的Detail层、Fine层Curvelet变换系数进行处理,增强数据点云的边缘。对增强后的Curvelet变换系数进行Curvelet逆变换,重构数据点云,提取数据点云的边缘,获取曲面特征。实例表明,以Curvelet变换分析为基础的曲面特征提取方法,可以更加准确地提取数据点云的曲面特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号