首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial variability in demographic parameters represents fundamental information for conservation and management of large‐river fish populations. We assessed demographic processes including survival and movement across macroscale habitats in a large‐river network using 2 candidate large‐river species with contrasting life history strategies. We used mark–recapture data and a multistate model framework to estimate survival and transition probabilities between main‐stem and tributary habitats for both channel catfish and shovelnose sturgeon. Annual survival for channel catfish was similar in main‐stem and tributary habitats (range in S = 0.47–0.58). Annual survival for shovelnose sturgeon was less in the tributary (S = 0.68) compared with the main stem (S = 0.83). The probability of movement among macroscale habitats differed between species. However, the greatest probability of movement occurred from the tributary to the main‐stem for both channel catfish (ψ = 0.42) and shovelnose sturgeon (ψ = 0.27). Movement between main‐stem and tributary rivers may be a prominent characteristic for both channel catfish and shovelnose sturgeon and could influence population demographic rates and abundance across systems. Riverine fish populations are likely structured across multiple salient scales—including tributary and main‐stem habitats. Consideration of connectivity across tributary and main‐stem habitats with respect to species' life history strategy and life stage may better integrate a systems' perspective for conservation and management of large‐river fish populations.  相似文献   

2.
The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.  相似文献   

3.
Maintaining or restoring physical habitat diversity is a central tenet of sustainable river management, yet a link between habitat and ecological diversity in fluvial systems has long remained equivocal. The lack of consistent evidence partly reflects the problems of characterizing habitat in ways that are ecologically meaningful. This paper assesses the influence of habitat heterogeneity and complexity on macroinvertebrate assemblages in a mountain gravel‐bed river. With the use of 0.1‐m resolution data obtained from an acoustic Doppler current profiler, heterogeneity and complexity in hydraulic conditions and bed topography were characterized using 13 metrics applied to 30 areas, each 1 m2, with an invertebrate sample collected from each area. Turnover of invertebrate taxa (i.e., β‐diversity) between sampled areas was rather limited, but observed differences in diversity were related significantly to several metrics of habitat heterogeneity. Invertebrate abundance was related to habitat diversity, patch size coefficient of variation, and patch size, whereas the Shannon diversity was related to the number of patches and patch size. None of the habitat complexity metrics accounted for a significant amount of observed variation in invertebrate communities between sampled areas. The paper demonstrates that high‐resolution data can help reveal relationships between habitat and benthic invertebrate diversity.  相似文献   

4.
河流形态多样性与生物群落多样性   总被引:83,自引:6,他引:83  
董哲仁 《水利学报》2003,34(11):0001-0006
本文阐述了生物群落与生物环境的统一性,归纳了河流形态多样性的5种特征,指出了河流形态多样性是流域生物群落多样性的基础。水利工程可能引起河流形态的均一化及非连续化,从而降低生物群落多样性的水平,造成对河流生态系统的一种胁迫。水利工程建设应注意保护和恢复河流多样性,以满足生态系统健康的需求。  相似文献   

5.
Prediction of changes to in‐stream ecology are highly desirable if decisions on river management, such as those relating to water abstractions, effluent discharges or modifications to the river channel, are to be justified to stakeholders. The physical habitat simulation (PHABSIM) system is a well‐established hydro‐ecological model that provides a suite of tools for the numerical modelling of hydraulic habitat suitability for fish and invertebrate species. In the UK, the most high‐profile PHABSIM studies have focused on rural, groundwater‐dominated rivers and have related to low flow issues. Conversely, there have been few studies of urban rivers. This paper focuses on the application of PHABSIM to urban rivers and demonstrates how sensitivity analyses can be used to assess uncertainty in PHABSIM applications. Results show that physical habitat predictions are sensitive to changes in habitat suitability indices, hydraulic model calibration and the temporal resolution of flow time‐series. Results show that there is greater suitable physical habitat over a wider range of flows in a less engineered river channel when compared to a more engineered channel. The work emphasizes the need for accurate information relating to the response of fish and other organisms to high velocities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Fish assemblages in large rivers are governed by spatio‐temporal changes in habitat conditions, which must be accounted for when designing effective monitoring programmes. Using boat electrofishing surveys, this study contrasts species richness, catch per unit effort (CPUE), total biomass, and spatial distribution of fish species in the Saint John River, New Brunswick, Canada, sampled during different diel periods (day and night) and macrohabitats (hydropower regulated river and its reservoir) in the vicinity of the Mactaquac (hydropower) Generating Station. Taxa richness, total CPUE, and total biomass were significantly higher during night surveys, resulting in marked differences in community composition between the two diel periods. Furthermore, the magnitude of diel differences in catch rate was more pronounced in lentic than in lotic macrohabitats. The required sampling effort (i.e., number of sites) to increase accuracy and precision of CPUE estimates varied widely between fish species, diel periods, and macrohabitats and ranged from 15 to 185 electrofishing sites. Determining a correction factor to contrast accuracy and precision of day‐ with night‐time surveys provide useful insights to improve the design of long‐term monitoring programmes for fish communities in large rivers. The study also shows the importance of multihabitat surveys to detect differences in the magnitude of diel changes in fish community metrics.  相似文献   

7.
Loss of habitat complexity through river channelization can have adverse affects on riverine fauna and flora through reductions in abundance and diversity of species. Habitat enhancement schemes are used to improve the physical and biological heterogeneity of riverine habitats. Between 1996 and 1997 the Environment Agency undertook a habitat enhancement scheme on the Huntspill River, Somerset, England to improve conditions for coarse (non‐salmonid) fishes. The scheme involved reducing bank gradients and the construction of off‐channel bays in parts of the channel, all of which were planted with willow (Salix sp.) and common reed (Phragmites australis). The effectiveness of the enhancement scheme was investigated by comparing 0‐group fish assemblages in manipulated and unmanipulated sites. Abundance and diversity of 0‐group fishes was significantly higher in manipulated habitats. There was no significant difference detected in the effects of the different types of enhancement measure used. The significance of microhabitats produced by habitat enhancement schemes is discussed with respect to spawning, nursery and refuge sites for 0‐group coarse fish assemblages. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Habitat rehabilitation efforts are predicated on the frequently untested assumption that habitat is limiting to populations. These efforts are typically costly and will be ineffective if habitat is not limiting. Therefore it is important to assess, rather than assume, habitat limitation wherever habitat rehabilitation projects are considered. Catch‐count data from a standardized probability‐based stratified‐random monitoring programme were examined for indirect evidence of backwater habitat limitation by centrarchid fishes in the Upper Mississippi River System. The monitoring design enabled fitting statistical models of the association between mean catch at the spatial scale of tens of river kilometres and the percentage of contiguous aquatic area in backwater at least 1 m deep by maximizing a stratum‐area weighted negative binomial log‐likelihood function. Statistical models containing effects for backwater limitation failed to account for substantial variation in the data. However, 95% confidence intervals on the backwater parameter estimates excluded zero, indicating that population abundance may be limited by backwater prevalence where backwaters are extremely scarce. The combined results indicate, at most, a weak signal of backwater limitation where backwaters are extremely scarce in the lower reaches, but not elsewhere in the Upper Mississippi River System. This suggests that habitat restoration projects designed to increase the area of backwaters suitable for winter survival of centrarchids are unlikely to produce measurable benefits over intermediate spatial scales in much of the Upper Mississippi River System, and indicates the importance of correct identification of limiting processes. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

9.
The McClellan–Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477‐km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1–17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
I sampled five sites above and below a dam in the central North Island of New Zealand on five to six occasions to examine the effects on benthic substrates, periphyton and invertebrate communities of (i) degree of flow regulation and (ii) flushing of sediment stored behind a dam. A series of volcanic eruptions during the course of this study provided the opportunity to investigate the effects of a period of high sediment delivery on this regulated river. The operation of the dam prior to sluicing of stored sediment appeared to have little impact on substrate size distribution or fine suspendable sediment levels. Periphyton biomass was markedly higher below than above the dam when sampling was preceded by a period of stable baseflow, but over all sampling dates biomass and inorganic content of periphyton did not appear to be related to degree of flow regulation. The taxonomic richness, biomass and density of invertebrate communities were lowest directly below, rather than above, the dam on most dates, and the site below the dam differed significantly from some of the downstream sites. However, changes in invertebrate abundance and diversity generally did not follow the expected gradient of flow regulation impacts except for the mayfly Deleatidium. Multiple regression analyses implicated substrate size and the biomass and inorganic content of periphyton as significant predictor variables for invertebrate density, biomass and taxonomic richness on sampling dates not influenced by recent sediment flushes, whereas degree of flow regulation was a significant predictor for densities of the dominant chironomid Cricotopus. The volcanic eruption led to deposition of fine silt that had passed through the dam with the residual flow and coarser sediments released during subsequent dam flushes. Flushing of stored sediment during large floods increased levels of sand and gravel directly below the dam and upstream of a large island in the middle reaches of the river, and also appeared to increase scouring of periphyton and associated invertebrates downstream. Overall, invertebrate communities in the study reach appeared to be structured more by periphyton accrual patterns, changes in substrate composition, the occurrence of large floods and natural longitudinal gradients than degree of flow regulation. These findings suggest that site‐specific and large‐scale factors can obscure generalized reach‐scale patterns expected along regulated rivers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
以深圳市某河流为研究对象,分析了投加H2O2对刚毛藻生物量的控制效果及其对水体p H、溶解氧、氨氮和总磷的影响。结果表明:H2O2≥1.25 mol/L时能有效抑制刚毛藻生长,使藻类光合活性在10 min内从5.8降低到0,叶绿素浓度在30 min内从5.8 mg/L降低至0.2 mg/L。现场试验投加H2O2处理河流水体中刚毛藻14 d内,藻类生物量、光合活性和叶绿素浓度降幅均高于90%。加药1 h后,河流p H值由原来的9.21~9.74迅速降低至8.23~8.80,14 d内保持在9以下。河流溶解氧、氨氮、总磷和H2O2残留浓度在除藻过程中存在变化,但是1 d后会迅速恢复至加药前水平。投加H2O2是一种有效、无污染的应急去除河流着生刚毛藻的方法。  相似文献   

12.
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human‐induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non‐impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human‐induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co‐influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non‐impoundment sections of rivers. After excluding river size and land‐use influences, our results clearly demonstrate that dams have significant impacts on fish biotic‐integrity and habitat‐and‐social‐preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Intermittent rivers are dynamic ecosystems that experience a predictable or unpredictable loss of surface water and are characterised by changing lotic, lentic (ponding) and dry habitats. Plant communities colonising dry channels during the desiccation stage can be diverse, abundant and differ in their tolerances to water availability and habitat conditions. This study examines the colonisation of terrestrial vegetation in two intermittent rivers in the United Kingdom, and whether terrestrial plant taxonomic richness and functional diversity increase during the dry phase. Six reaches were surveyed for terrestrial plants during the dry phase over a standard 100 m length every month from April to October 2021. We found the channel and bank taxonomic richness increased with drying duration. Functional traits of vegetation height, clonality, clonality richness and Ellenberg's value of light moisture also increased with stream desiccation. Bed sediment conditions (the proportion of sand and gravel) and the 12-month antecedent percentage of zero flow days were the key drivers of plant community composition. We believe plant propagules from the riparian zone and channel vegetation on topographic high points in the channel aided plant colonisation of the riverbed once flow ceased. Past research may have underestimated the biodiversity value of intermittent rivers by failing to include the ecological importance of plants during the dry phase. Information on plant diversity of the dry phase is important to determine the overall biodiversity of intermittent rivers for their long-term conservation and management.  相似文献   

14.
本文通过嫩江堤防工程的施工实例,详细介绍了机织模袋从设计到施工的整个过程及特点,以期机织模依的推广应用。  相似文献   

15.
在我国西北干旱区以季节性积雪融水为重要补给源的山区流域,温度通过影响土壤冻融循环而间接对径流产生影响。为了更好地模拟以积雪融水为重要补给水源的高寒山区的径流过程,判断不同温度指标以及冻土对径流的影响,本研究以开都河流域为例,通过改进基于系统动力学原理构建的水文模型,分析了用正积温和平均温度估算融雪速率,以及是否考虑冻土影响条件下模型对径流的模拟能力,用相关系数、Nash-Sutcliffe效率系数、均方根误差和观测标准差等评价指标对不同方案下模型的模拟能力进行了评价。结果表明用正积温估算融雪速率同时考虑季节性冻土影响情况下模型的模拟能力最高,从而证实了正积温能够更好地计算积雪融水、模拟融雪径流,且在高寒山区季节性冻土广泛发育的地区,考虑冻土的影响十分必要。  相似文献   

16.
Globally, dams fragment river networks, threatening migratory fishes which require access to distinct habitats to complete their life cycles. Efforts to understand how cumulative effects of multiple dams affect migratory fishes across large regions, such as a country or continent, could help to identify locations for connectivity-enhancing actions to conserve migratory fishes. To address this, we evaluated cumulative effects of dams on migratory fishes in rivers across nine ecoregions of the conterminous USA. First, using fish data from thousands of sites (N = 45,989), we summarized ecoregional patterns in assemblages, quantifying the number of migratory species comprising assemblages, showing the prominence of potamodromous species across the large region as well as differences in migratory life history traits among ecoregions. Next, we compared the importance of a set of river network fragmentation metrics that captured influences of multiple dams in networks versus other anthropogenic landscape stressors and natural landscape factors that impact migratory fishes by ecoregion. We found that migratory fishes were more sensitive to cumulative dam effects than other stressors including urbanization and agriculture in the eastern USA. To further identify specific effects of environmental variables on potamodromous fishes, we conducted Boosted Regression Trees analysis in the eastern ecoregions. Our results suggested that the key natural influences on river fishes included catchment area as well as river baseflow and air temperature, suggesting that migratory fishes may be affected by changing climate. Additionally, we found that downstream dams were more influential than other human stressors to potamodromous fishes, underscoring the importance of enhancing connectivity within river networks to conserve migratory fishes. Collectively, our results provide new insights in identifying threats to migratory fish species across the USA, providing information that can aid in conserving this vulnerable but ecologically and socioeconomically important group of fishes.  相似文献   

17.
河势演变和水流的动力学特性,对水利工程安全和穿越管道的防护设计具有重要意义。本文结合不同洪水流量时的河势演变,给出了不同水流的水面差值,横向垂线流速分布,环流的环量和环流间的诱导速度;分析了水流及其动力学特性产生的横向与纵向作用力,动量和动量矩的作用,可能出现的绕流升力和压差阻力等,为类似研究与工程设计提供一个范例。  相似文献   

18.
Riverine fish populations depend on habitats supporting their resource and life history needs. Dynamic streamflow caused by river regulation or natural events influences the distribution of downstream habitat characteristics. Through studying habitat selection, we can identify the most utilized and valuable habitats for the success of native fishes. We determined seasonal habitat selection of two common, native fish species on the Osage River downstream of Bagnell Dam, a hydroelectric dam in central Missouri, from April 2016 to June 2017 using radio telemetry. Spotted Bass (Micropterus punctulatus) are nest‐guarders, sight feeders, and habitat generalists, whereas Shorthead Redhorse (Moxostoma macrolepidotum) are fluvial dependent, migratory, and benthic feeders. Bayesian discrete choice analyses determined that both species selected particular water depth, velocity, and presence of submerged cover in some or all seasons, even as available habitat changed. Spotted Bass selected water depths <4.0 m near submerged cover during all seasons, low velocity during spring and summer, and near‐bank habitat in all seasons except spring. Shorthead Redhorse used fast flowing habitat during spring, 0.4–1.1 m/s velocity during summer, and low velocity in fall and winter (0.1–0.5 m/s). Shorthead Redhorse used submerged cover in all seasons except summer and selected specific ranges of depth within spring (2.4–4.4 m), summer (3.3–6.7 m), and winter (1.1–2.3 m). Our findings suggest that maintaining habitats with cover and diverse water depths and velocities, particularly both low and high velocity habitats during spring, may promote resilience by providing beneficial habitats for native fishes.  相似文献   

19.
20.
Macrophytes were transplanted into a lowland stream affected by river engineering works. The aim was to analyse the feasibility of their reintroduction and potential to be used for the recovery of the structure and complexity of the lotic habitat. Macrophytes contribute heterogeneity to streams, modify the current velocity, affect sediment and nutrients dynamics, and provide a substrate for epiphytic biofilm. We transplanted specimens of Ludwigia peploides, Gymnocoronis spilanthoides, and Egeria densa into a stream located in the Pampean plain (Buenos Aires, Argentina). The growth and coverage of the transplanted macrophytes and the changes in the structure of the epiphytic biofilm were assessed. The results show that specimens of Gspilanthoides were negatively affected by the transplant and new conditions, Edensa decreased its coverage after the transplant, and Lpeploides endured the transplant and adapted to the dredging site with successful establishment and expansion. There were no significant differences between the biofilm developed in Lpeploides and Gspilanthoides. Additionally, the biofilm had similar features between the transplanted macrophytes and those from a site with no dredging. Considering this result, the selection between these macrophytes in relation to biofilm production is indifferent. However, as Lpeploides adapts better to the new conditions generated by the river engineering works, its use in the rehabilitation project is recommended. Moreover, it is important to consider the ability of different species of macrophytes to survive the transplant and grow under new environmental conditions in order to include them in rehabilitation projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号