首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fluctuating flows common in hydropeaking operations present biota with contrasting and challenging environments. Taxa that require a narrow range of water velocity or are not adapted to withstand sudden changes in discharge will likely be eliminated or competitively disadvantaged under such circumstances, perhaps leading to reduced biodiversity. I investigated the whole river, longitudinal and lateral patterns of benthic invertebrate abundance, Shannon–Wiener diversity, and rarefied taxa density and richness in the hydropeaking Magpie River and 16 neighbouring natural rivers. The Magpie River had greater abundances of benthic invertebrates than natural rivers, particularly near the dam. General differences in benthic community characteristics were largely based on the near absence of Odonata and Plecoptera and an abundance of snails and worms in the Magpie River. Family density, richness and diversity were greater in the regulated Magpie River and unregulated upper Magpie River than found in natural rivers. Longitudinally, family density, diversity and particularly richness increased downstream in the Magpie River. Laterally, diversity did not show any trends with increasing depth along transects, except at near the dam where it decreased sharply with depth, velocity, and an abundance of filter feeding invertebrates. Taxa density did not show any lateral trends in natural rivers, whereas in the Magpie River, it increased with water velocity and depth. The results of this study are contradictory to the general findings of others implying reduced biodiversity below hydropower facilities. Possible explanations are examined and contrasted with other examinations of benthic invertebrate response below hydropeaking dams. © Her Majesty the Queen in Right of Canada 2012.  相似文献   

2.
Hydropeaking hydropower plants are the main source of renewable energy, meeting sub-daily peaks in electricity demand. They induce rapid artificial flow variations, highly variable velocities, drift, and stranding risks for aquatic organisms. In hydropeaking reaches, microhabitat selection likely depends on both present and past hydraulics (flow velocity and water depth); this study aims to assess their relative impact. For this purpose, we used observations of fish abundance in 1,180 microhabitats (507 sampled by electrofishing, 673 by snorkeling) and of invertebrate abundance in 36 microhabitats (hyporheic and benthic) in a medium-sized hydropeaking river. We described past hydraulics of microhabitats over the 15 days preceding sampling, using a 2D hydrodynamic model, by identifying microhabitats dewatering (drying during >10 hr) or with high-velocity conditions (>1.3 m s−1 during >10 hr). Invertebrates guilds (defined based on their selection of present hydraulics in rivers without hydropeaking) responded significantly to past hydraulics, with abundances 3.5–15.3 times lower in dewatering habitats. Selection for present hydraulics by invertebrates was different from that observed in rivers without hydropeaking. For more mobile fish, responses were weaker and different, with a “bank” guild selecting dewatering microhabitats and, secondarily, a “midstream” guild avoiding them. Selection of present hydraulics by fish was similar to that observed in rivers without hydropeaking. Overall, past hydraulics influenced microhabitat selection, with stronger effects on invertebrates and stronger effects of dewatering than of high past velocities. However, high past velocities force fish to move and invertebrates to experience a large range of velocity.  相似文献   

3.
This article proposes and demonstrates a new classification system of fish population level effects of hydropeaking operations in rivers. The classification of impacts is developed along two axes; first, the hydromorphological effect axis assesses the ecohydraulic alterations in rivers introduced by rapid and frequent variations in flow and water level, second the vulnerability axis assesses the site-specific vulnerability of the fish population. Finally, the population level impact is classified into four classes from small to very large by combining the two axes. The system was tested in four rivers in Norway exposed to hydropeaking, and they displayed a range of outcomes from small to very large impacts on the salmon populations. The river with a relatively high base flow and ramping restrictions scored better than rivers with the lower base flow or limited ramping restrictions, indicating that hydropeaking effects can be mitigated while maintaining high hydropower flexibility. Most effect factors could easily be calculated from timeseries of discharge and water level, whereas the use of hydraulic models to estimate potential stranding areas may require more work. The vulnerability factors are mainly qualitative and depend more heavily on expert judgments and are thus more uncertain. The system was deemed suitable for the purpose of supporting management decisions for rivers exposed to hydropeaking operations. It evaluates the severity of the additional pressures due to hydropeaking operations and proved useful to identify mitigating measures. While the system was developed for Atlantic salmon river systems, it could be adapted to other species or systems.  相似文献   

4.
As more hydroelectric dams regulate rivers to meet growing energy demands, there is ongoing concern about downstream effects, including impacts on downstream benthic macroinvertebrate (BMI) communities. Hydropeaking is a common hydroelectric practice where short‐term variation in power production leads to large and often rapid fluctuations in discharge and water level. There are key knowledge gaps on the ecosystem impacts of hydropeaking in large rivers, the seasonality of these impacts, and whether dams can be managed to lessen impacts. We assessed how patterns of hydropeaking affect abundance, taxonomic richness, and relative tolerance of BMIs in the Saskatchewan River (Saskatchewan, Canada). Reaches immediately (<2 km) downstream of the dam generally had high densities of BMIs and comparable taxonomic diversity relative to upstream locations but were characterized by lower ratios of sensitive (e.g., Ephemeroptera, Plecoptera, and Trichoptera) to tolerant (e.g., Chironomidae) taxa. The magnitude of effect varied with seasonal changes in discharge. Understanding the effects of river regulation on BMI biodiversity and river health has implications for mitigating the impacts of hydropeaking dams on downstream ecosystems. Although we demonstrated that a hydropeaking dam may contribute to a significantly different downstream BMI assemblage, we emphasize that seasonality is a key consideration. The greatest differences between upstream and downstream locations occurred in spring, suggesting standard methods of late summer and fall sampling may underestimate ecosystem‐scale impacts.  相似文献   

5.
Climate change asks for the reduction in the consumption of fossil‐based fuels and an increased share of non‐regulated renewable energy sources, such as solar and wind power. In order to back up a larger share of these intermittent sources, ‘battery services’ are needed, currently provided only in large scale by hydropower, leading to more rapid and frequent changes in flows (hydropeaking) in the downstream rivers. Increased knowledge about the ecosystem response to such operations and design of cost‐effective measures is needed. We analysed the response of fish communities to hydropeaking (frequency, magnitude, ramping rate and timing) and the interaction with the habitat conditions in Austrian rivers. An index of biotic integrity (Fish Index Austria) was used to compare river sections with varying degrees of flow fluctuations under near‐natural and channelized habitat conditions. The results showed that habitat conditions, peak frequency (number of peaks per year), ramping rate (water level variation) and interaction between habitat and ramping rate explained most of the variation of the Fish Index Austria. In addition, peaking during the night seems to harm fish more than peaking during the day. Fish communities in hyporhithral and epipotamal types of rivers are more affected by hydropeaking than those in metarhithral type of rivers. The results support the findings of other studies that fish stranding caused by ramping rates >15 cm h?1 are likely to be the main cause of fish community degradation when occurring more often than 20 times a year. While the ecological status degrades with increasing ramping rate in nature‐like rivers, fish communities are heavily degraded in channelized rivers regardless of the ramping rate. The mitigation of hydropeaking, therefore, requires an integrative approach considering the combined effects of hydrological and morphological alterations on fish. © 2014 The Authors. River Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

6.
We assessed the effect of a hydropeaking diversion mitigation measure that allows for additional hydropower production, which markedly reduced hydropeaking on a 10-km stream reach in the north-eastern Italian Alps. Hydropeaking, caused by a storage hydropower plant, affected the study reach from the 1920s to 2015, when a cascade of three small run-of-the-river plants was installed to divert the hydropeaks from the plant outlet directly into the intake of the RoRs plants, and hydropeaking was released downstream the confluence with a major free-flowing tributary. The flow regime in the mitigated reach shifted from a hydropeaking-dominated to a baseflow-dominated regime in winter, with flow variability represented only by snowmelt and rainfall in late spring and summer. The application of two recently proposed sets of hydropeaking indicators, the hydraulic analysis of the hydropeaking wave, together with the assessment of biotic changes, allowed quantifying the changes in ecohydraulic processes associated with hydropeaking mitigation. The flow regime in the mitigated reach changed to a residual flow type, with much less frequent residual hydropeaks; although an average two-fold increase in downramping rates were recorded downstream the junction with the tributary, these changes did not represent an ecological concern. The functional composition of the macrobenthic communities shifted slightly in response to flow mitigation, but the taxonomic composition did not recover to conditions typical of more natural flow regimes. This was likely due to the reduced dilution of pollutants and resulting slight worsening in water quality. Conversely, the hyporheic communities showed an increase in diversity and abundance of interstitial taxa, especially in the sites most affected by hydropeaking. This effect was likely due to changes in the interstitial space availability, brought by a reduction of fine sediments clogging. Besides illustrating a feasible hydropeaking mitigation option for Alpine streams, our work suggests the importance of monitoring both benthic and hyporheic communities, together with the flow and sediment supply regimes, and physico-chemical water quality parameters.  相似文献   

7.
Deviation from a river's natural flow regime is considered to be one of the most serious and continuing threats to lotic ecosystems. Peaking hydroelectric facilities, which are designed to adjust the level of power generation in accordance with hourly energy demand, can dramatically alter flows and temperatures and ultimately lead to changes in the quantity and quality of habitat available to fish. In this study, we examine the spatial distribution of river fishes, benthic invertebrates and organic matter along lateral and longitudinal gradients in two hydropeaking and eight natural Lake Superior tributaries in Ontario, Canada. This study demonstrates that (i) hourly variation in flow, caused by hydropeaking, results in a varial zone that supports significantly fewer fish than the adjacent permanently wetted channel and (ii) strong longitudinal gradients in fish biomass, particularly for sedentary species such as slimy sculpin (Cottus cognatus), exist in regulated rivers, and fish biomass is up to four times greater at sites directly below the peaking dams than at sites further downstream or in nearby natural rivers. Gradients in the spatial distribution of fishes closely follow changes in food resources such as benthic organic matter and invertebrates, suggesting that these gradients are driven by spatial shifts in food availability and are ultimately caused by gradients in abiotic habitat variables. Monitoring and assessment efforts should take into account that lateral and longitudinal gradients exist in regulated rivers, and this understanding must be incorporated into sampling programmes. Failing to do so could alter the interpretation of river productivity, integrity and health. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The shallow-sloping coastal bathymetry of Saginaw Bay (Lake Huron) supports broad fringing wetlands. Because benthic invertebrates form an important forage base for fish, wading birds, and waterfowl that utilize these habitats, understanding the drivers of invertebrate community structure has significant management implications. We used Great Lakes basin-wide data from 2002 to place Saginaw Bay wetland invertebrate communities and their environmental drivers into a basin-wide context. Various aspects of community structure were highly correlated with fetch and watershed agriculture across the basin. Saginaw Bay wetlands had relatively high fetch and watershed agriculture and supported unique invertebrate communities, typified by high abundances of many insect taxa. Wetlands from other regions around the basin tended to have more crustaceans and gastropods than the Saginaw Bay wetlands. A 1997–2012 time series from three representative Saginaw Bay wetlands revealed substantial shifts in community structure throughout the period, especially from 2001 through 2004. These years followed a 1-m decline in Lake Huron water levels that occurred between 1997 and 2000. Major community changes included decreasing insect abundance, especially chironomids, and increasing crustacean abundances, especially Hyalella azteca (Amphipoda). While factors in addition to water levels were likely also important, our time series analysis reveals the marked temporal dynamics of Saginaw Bay wetland invertebrate communities and suggests that water level decline may have influenced these communities substantially. Both the spatial and temporal community patterns that we found should be considered in future bio-assessments utilizing wetland invertebrates.  相似文献   

9.
The Orlu hydroelectric power plant on the River Oriège is managed by ‘hydropeaking’ and generates significant and frequent daily fluctuations in flow downstream. Observations at this site aimed to determine the impact of these variations on the aquatic environment. Surveys were carried out in June and October, upstream and about 2 km downstream of the plant, with a view to studying fish feeding habits and nutritive resources. In June, when the natural river flow was high, invertebrate populations differed very little between the two sectors. In October, after the low-water period, density and biomass were significantly lower in the downstream sector than they were upstream. Invertebrate drift was studied by taking samples every hour over a 24-hour cycle. Upstream, this drift showed a clear daily rhythm, dominated by nocturnal drift. Downstream in June, invertebrate drift was more abundant than upstream; a similar nychthemeral rhythm was apparent, but there were significant peaks during hydropeaking. In October, this daily rhythm disappeared, and drift was extremely low when river flow was low; on the other hand, a marked increase was observed during hydropeaking. Fish feeding habits were studied parallel to drift by capturing about 20 fish every four hours and analysing their stomach contents. No clear rhythm in the daily food uptake was observed. Stomach content was more abundant downstream. Lastly, the number of prey captured by fish at a given period of the day did not appear to be linked with the effective quantity of invertebrates simultaneously available in the river.  相似文献   

10.
Localized hypoxia can reduce available habitat, restrict movement and limit the abundance of aquatic invertebrates. Although cultural eutrophication, coupled with the effects of climate change, is likely to increase the frequency and extent of hypoxia in aquatic ecosystems, little is known about how oxygen gradients in small reservoirs influence spatial distribution and abundance of aquatic invertebrates. The present study evaluated the effects of environmental and biological attributes on seasonal and spatial variation of macroinvertebrates and explored how hypoxic conditions influenced littoral, benthic and pelagic macroinvertebrate communities in Lake Alvin, South Dakota. Data on reservoir conditions, in conjunction with macroinvertebrate sampling from May to October 2009–2011, were applied in an information theoretic approach to evaluate factors affecting invertebrate abundance. Hypoxic conditions were present from May to September in the lacustrine zone impacting 10%–39% of the water column. Benthic invertebrates were typically absent from the lacustrine zone during periods of severe hypoxia and were most abundant in the shallow, well-oxygenated riverine zone. Littoral invertebrates were negatively related to the per cent of the hypoxic water column, suggesting fish, confined to shallow waters by hypoxia, may be consuming a larger portion of littoral invertebrates in their diets. Cladocera and Copepoda densities were influenced primarily by water depth and monthly precipitation. The larger size of Daphnia found in the hypoxic-prone transitional and lacustrine zones suggested low oxygen concentrations may provide a refuge from fish predation. The results of the present study demonstrated spatial variations in near-bottom oxygen concentrations were important predictors of macroinvertebrate and zooplankton abundance and size structure in Lake Alvin and that macroinvertebrates, particularly benthic and littoral invertebrates, could benefit from measures taken to reduce summer hypoxia.  相似文献   

11.
Hydropeaking operation leads to fluctuations in wetted area between base and peak flow and increases discharge-related hydraulic forces (e.g. flow velocity). These processes promote macroinvertebrate drift and stranding, often affecting benthic abundance and biomass. Our field experimental study—conducted in three hydropeaking-regulated Swiss rivers—aimed to quantify (a) the short-term effects of the combined increase in flow amplitude and up-ramping rate based on macroinvertebrate drift and stranding, as well as (b) long-term effects based on the established community composition. Hydropeaking led to increased macroinvertebrate drift compared to base flow and to unaffected residual flow reaches. Moreover, stranding of macroinvertebrates was positively related to drift, especially during the up-ramping phase. Flow velocity and up-ramping rate were identified as major determinants for macroinvertebrate drift, while flow ratio and down-ramping rate for stranding. Particularly high sensitivity towards hydropeaking was found for Limnephilidae, whereas Heptageniidae seemed to be resistant in respect to short- and long-term hydropeaking effects. In the long-term, hydropeaking did not considerably reduce benthic density of most taxa, especially of some highly resistant and resilient taxa such as Chironomidae and Baetidae, which dominated the community composition even though they showed comparably high drift and stranding responses. Therefore, we argue that high drift and/or stranding, especially of individual-rich taxa, does not necessarily indicate strong hydropeaking sensitivity. Finally, our results demonstrate the necessity to consider the differences in river-specific morphological complexity and hydropeaking intensity, since these factors strongly influence the community composition and short-term drift and stranding response of macroinvertebrates to hydropower pressure.  相似文献   

12.
Due to the disparate characteristics of Austria’s rivers, streams and surrounding riparian areas, similar anthropogenic impacts on our water systems can spark varying reactions. This is also true in the case of those waters affected by hydropeaking. In this context, the specific geometry of the river in question and the potential for “natural development” should be considered the basis for the river’s use as a habitat. These river-type-specific traits and their interplay with hydropeaking processes are at the core of this work, which summarizes the key findings of the SCHWALL_2012 research project. The results show that a river-type-specific and also river-reach-specific assessment of the influence of base and peak flows is essential to effective future river management, as different habitat changes can arise, depending on the respective river morphology and seasonal flow variations. Furthermore, detailed sedimentological studies show that on the one hand the base flow to peak flow ratio does not influence the accumulation of fine sediment in the constantly wetted areas of riverbeds, and that on the other the coarsening of gravel bars can have a major influence on the stranding risk for juvenile fish. With regard to this stranding risk, the findings also show that shallow-water areas display good hydraulic characteristics at both base and peak flow, though, given the habitat they provide for benthic organisms, naturally formed shallow-water areas (e.g. downstream from gravel bars) offer certain advantages over artificially created groin fields. In order to restore rivers and streams affected by hydropeaking, it will be necessary to improve both (a) the hydrological conditions (e.g. ramping velocity) and (b) the morphological situation on the rivers in question (e.g. through restructuring).  相似文献   

13.
There has been little effort to understand how tributaries influence mainstem rivers at large scales beyond the immediate influence of the tributary and downstream of the mixing zone. Such knowledge is needed to create breaks in stream networks that can aid in the classification of stream valley segments and conservation studies that rely on the delineation of zones. We use benthic invertebrate assemblages to infer longitudinal gradients and discontinuities and relate these patterns to confluence symmetry ratio (CSR; the size ratio of the tributary basin to the mainstem basin upstream of the confluence). In addition, we briefly explore reach and catchment‐scale environmental influences. We found evidence for both gradual and abrupt longitudinal changes in benthic invertebrate communities. There was not a smooth continuous gradient but a sawtooth pattern with an overarching trend. Two major discontinuities were found: one associated with a large CSR = 0.74 and reach scale factors including predominance of sand and an abundance of benthic organic matter that provided a unique habitat; and a second associated with a large CSR = 0.64 and a transition from coarse textured morainal deposits to glaciolacustrine deposits. There were synchronous additions of some benthic invertebrates (e.g., Eukiefferiella brehmi, Antocha, Hydropsyche morosa, and Oligochaeta) showing an affinity for downstream reaches, whereas others showed an affinity for headwater reaches (e.g., Simulium tuberosum, Baetis tricaudatus, and Micropsectra). Benthic invertebrate communities were driven by a combination of confluence symmetry ratio, landscape, and reach scale factors that can confound interpretation.  相似文献   

14.
The effects of piscicides on aquatic invertebrates are often studied after one treatment, even though piscicides may be repeatedly applied within river management. Here we investigate the impacts of repeated piscidie treatment on riverine benthic invertebrates. The River Ogna, Norway, was treated with rotenone three times over a 16‐month period. The two first treatments caused temporary density reduction of a few rotenone sensitive benthic invertebrate taxa. Effects of the third treatment were variable with some taxa unaffected while all Plecoptera, were locally extinct. The toxic effect of rotenone increases with water temperature and high water temperature (20 °C) combined with high rotenone concentration was probably the main reason why the benthic community in the third treatment was more negatively affected than during the two previous treatments (4 and 8 °C). Eight months after the treatment benthic densities had not reached pre‐treatment levels, but most taxa had recolonized the treated area within a year. Our data suggest that the severe effects of the third treatment were not influenced by the two former ones. This implies that the timing of piscicide treatment has a greater impact on the benthic invertebrate community than the number of treatments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
I sampled five sites above and below a dam in the central North Island of New Zealand on five to six occasions to examine the effects on benthic substrates, periphyton and invertebrate communities of (i) degree of flow regulation and (ii) flushing of sediment stored behind a dam. A series of volcanic eruptions during the course of this study provided the opportunity to investigate the effects of a period of high sediment delivery on this regulated river. The operation of the dam prior to sluicing of stored sediment appeared to have little impact on substrate size distribution or fine suspendable sediment levels. Periphyton biomass was markedly higher below than above the dam when sampling was preceded by a period of stable baseflow, but over all sampling dates biomass and inorganic content of periphyton did not appear to be related to degree of flow regulation. The taxonomic richness, biomass and density of invertebrate communities were lowest directly below, rather than above, the dam on most dates, and the site below the dam differed significantly from some of the downstream sites. However, changes in invertebrate abundance and diversity generally did not follow the expected gradient of flow regulation impacts except for the mayfly Deleatidium. Multiple regression analyses implicated substrate size and the biomass and inorganic content of periphyton as significant predictor variables for invertebrate density, biomass and taxonomic richness on sampling dates not influenced by recent sediment flushes, whereas degree of flow regulation was a significant predictor for densities of the dominant chironomid Cricotopus. The volcanic eruption led to deposition of fine silt that had passed through the dam with the residual flow and coarser sediments released during subsequent dam flushes. Flushing of stored sediment during large floods increased levels of sand and gravel directly below the dam and upstream of a large island in the middle reaches of the river, and also appeared to increase scouring of periphyton and associated invertebrates downstream. Overall, invertebrate communities in the study reach appeared to be structured more by periphyton accrual patterns, changes in substrate composition, the occurrence of large floods and natural longitudinal gradients than degree of flow regulation. These findings suggest that site‐specific and large‐scale factors can obscure generalized reach‐scale patterns expected along regulated rivers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Hydropower is considered an important form of renewable energy, often involving hydropeaking. While the effects of hydropeaking on aquatic communities in areas downstream the dam are well understood, there is a lack of studies investigating potential impacts on tributaries located further upstream. In this study, we tested the effects of hydropeaking operations on upstream tributaries in a restored area of the Danube River, with a focus on the periods of backlog and release of water (up-ramping and down-ramping, respectively) during the filling and release of the reservoir. We used brown trout egg and larval mortality, linked to hydraulic, sedimentary and physiochemical changes in spawning grounds as an indicator. We compared hydropeaking-affected versus non-affected sites in upstream tributaries using HydroEcoSedimentary Tools (HESTs) loaded with clean gravels and brown trout eggs. Egg and larval mortalities were significantly higher in the hydropeaking-affected site with more than 80% egg mortality and almost 100% larval mortality compared to values of 55–63% and 80–85%, respectively, in non-affected sites. Spawning ground quality was significantly altered in the hydropeaking-affected site, where the highest mortalities were observed. Overall, duration of time periods with flow velocities close to zero were a key variable, potentially decreasing oxygen supply for eggs and larvae. Such periods of close to zero flow velocities were driven by backlog periods during the filling of the reservoir, revealing that such events can severely impair ecological integrity of spawning sites in tributaries upstream of dams by slowing the flows in upstream tributaries. Such altered processes can reduce fish population recruitment and need to be considered in future restoration projects.  相似文献   

17.
Fluctuations in river flows result from diverse natural and/or anthropogenic causes. Hydropeaking, an important anthropogenic flow alteration, results from the rapid increase or decrease of water releases from reservoirs at hydroelectric power stations to meet variable demand for electrical power, thereby altering the flow regime of the river downstream of the hydroelectric power station. Hydropeaking causes short‐term, artificial fluctuations in flow on an hourly, daily, and/or weekly basis. The frequent and regular occurrences of these high and low flow events are fundamentally different from natural flood and drought events and may affect fish fauna. We compared the fish species composition and fish age and size distributions in the Saskatchewan River (Saskatchewan, Canada) downstream of a hydropeaking facility with results from an unaffected Reference Site situated upstream of the reservoir. Lower fish diversity was observed in the 2 downstream sites (Sites 1 and 2, number of species = 11 and 9, respectively) closest to Generating Station in comparison to Site 3 (n = 15) situated further downstream and the upstream reference site (n = 13). There was no difference in the age–length relationship of any of the fish species above and below the Generating Station suggesting that fish grew at the same rates. However, lower numbers of small‐bodied and juvenile fish were caught downstream of the Generating Station suggesting the possibility of increased mortality, decreased habitat suitability, or altered behaviour of small fish downstream of the dam. These data illustrate potential impacts of hydropeaking power stations and has management implications.  相似文献   

18.
19.
Sudden changes in water releases below hydropower facilities (hydropeaking) can dramatically affect benthic organisms. Aquatic gastropods are an ideal organism for studying such effects because they inhabit littoral areas that are frequently dewatered during hydropeaking and have a low dispersal ability making them highly susceptible. We explored mortality rates of Taylorconcha serpenticola, the threatened Bliss Rapids snail, in four laboratory experiments that simulated hydropeaking during varying seasons and varying hydropower operation scenarios. Experiments were conducted in a light and temperature controlled Conviron® and were designed to simulate conditions on the Middle Snake River, Idaho, USA, in reaches that are subjected to hydropeaking. Experiments examined the effects of three air temperatures (winter = ?7°C, spring = 17°C and summer = 37°C), three durations of exposure to air (2, 4 and 6 h), three dewatering rates (instantaneous, 0.3 and 0.15 m h?1), two substrate textures (smooth and vesicular) and consecutive daily exposures (1 to 15 days). With 2 h exposures >80% of gastropods survived under both the summer and winter condition, but with 6 h exposure only 60% survived under winter conditions and almost none survived under summer conditions. Survivorship of gastropods was always high under spring conditions (>90%) even when exposed for 6 h d?1for up to 15 days. When subjected to consecutive daily exposures, survivorship was lowest under winter conditions. Neither rate of dewatering nor substrate texture affected survivorship. Our data suggest that hydropower operations that include rapid stage fluctuations under extreme temperatures can cause high mortality of sensitive benthic species especially when exposure time is prolonged. Future water management policy decisions will need to consider these factors to manage for protection of aquatic species of conservation concern. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号