首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autonomous soaring has the potential to greatly improve both the range and endurance of small robotic aircraft. This paper describes the results of a test flight campaign to demonstrate an autonomous soaring system that generates a dynamic map of lift sources (thermals) in the environment and uses this map for on‐line flight planning and decision making. The aircraft is based on a commercially available radio‐controlled glider; it is equipped with an autopilot module for low‐level flight control and on‐board computer that hosts all autonomy algorithms. Components of the autonomy algorithm include thermal mapping, explore/exploit decision making, navigation, optimal airspeed computation, thermal centering control, and energy state estimation. A finite state machine manages flight behaviors and switching between behaviors. Flight tests at Aberdeen Proving Ground resulted in 7.8 h flight time with the autonomous soaring system engaged, with three hours spent climbing in thermals. Postflight computation of energy state and frequent observations of groups of birds thermalling with our aircraft indicate that it was effectively exploiting available energy.  相似文献   

2.
One of the main challenges for autonomous aerial robots is to land safely on a target position on varied surface structures in real‐world applications. Most of current aerial robots (especially multirotors) use only rigid landing gears, which limit the adaptability to environments and can cause damage to the sensitive cameras and other electronics onboard. This paper presents a bioinpsired landing system for autonomous aerial robots, built on the inspire–abstract–implement design paradigm and an additive manufacturing process for soft thermoplastic materials. This novel landing system consists of 3D printable Sarrus shock absorbers and soft landing pads which are integrated with an one‐degree‐of‐freedom actuation mechanism. Both designs of the Sarrus shock absorber and the soft landing pad are analyzed via finite element analysis, and are characterized with dynamic mechanical measurements. The landing system with 3D printed soft components is characterized by completing landing tests on flat, convex, and concave steel structures and grassy field in a total of 60 times at different speeds between 1 and 2 m/s. The adaptability and shock absorption capacity of the proposed landing system is then evaluated and benchmarked against rigid legs. It reveals that the system is able to adapt to varied surface structures and reduce impact force by 540N at maximum. The bioinspired landing strategy presented in this paper opens a promising avenue in Aerial Biorobotics, where a cross‐disciplinary approach in vehicle control and navigation is combined with soft technologies, enabled with adaptive morphology.  相似文献   

3.
Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations. Our vision‐based mapping approach consists of two separate steps. First, the drone performs an overview flight at a safe altitude acquiring overlapping nadir images, while creating a high‐quality sparse map of the environment by using a state‐of‐the‐art photogrammetry method. Second, this map is georeferenced, densified by fitting a mesh model and converted into an Octomap obstacle map, which can be continuously updated while performing a task of interest near the ground or in the vicinity of objects. The generation of the overview obstacle map is performed in almost real time on the onboard computer of the drone, a map of size is created in , therefore, with enough time remaining for the drone to execute other tasks inside the area of interest during the same flight. We evaluate quantitatively the accuracy of the acquired map and the characteristics of the planned trajectories. We further demonstrate experimentally the safe navigation of the drone in an area mapped with our proposed approach.  相似文献   

4.
For marine industrial inspection, archaeology, and geological formation study, the ability to map unknown underwater enclosed and confined spaces is desirable and well suited for robotic vehicles. To date, there are few solutions thoroughly tested in the field designed to perform this specific task, none of which operate autonomously. With a small, low‐cost biomimetic platform known as the U‐CAT, we developed a mapping‐mission software architecture in which the vehicle executes three key sensor‐based reactive stages: entering, exploring, and exiting. Encapsulated in the exploring stage are several state‐defined navigation strategies, called patterns, which were designed and initially tested in simulation. The results of simulation work informed the selection of two patterns that were executed in field trials at a submerged building in Rummu Quarry Lake, Estonia, as part of several full mapping missions. Over the course of these trials, the vehicle was capable of observing the majority (78–97%) of 49.9 explorable square meters within 7 minutes. Based on these results, we demonstrate the capability of a low‐cost and resource‐constrained vehicle to perform confined space mapping under sensor uncertainty. Further, the observations made by the vehicle are shown to be suitable for a target site reconstruction and analysis in postprocessing, which is the intended outcome of this type of mission in practical applications.  相似文献   

5.
This study presents a novel octree‐based three‐dimensional (3D) exploration and coverage method for autonomous underwater vehicles (AUVs). Robotic exploration can be defined as the task of obtaining a full map of an unknown environment with a robotic system, achieving full coverage of the area of interest with data from a particular sensor or set of sensors. While most robotic exploration algorithms consider only occupancy data, typically acquired by a range sensor, our approach also takes into account optical coverage, so the environment is discovered with occupancy and optical data of all discovered surfaces in a single exploration mission. In the context of underwater robotics, this capability is of particular interest, since it allows one to obtain better data while reducing operational costs and time. This study expands our previous study in 3D underwater exploration, which was demonstrated through simulation, presenting improvements in the view planning (VP) algorithm and field validation. Our proposal combines VP with frontier‐based (FB) methods, and remains light on computations even for 3D environments thanks to the use of the octree data structure. Finally, this study also presents extensive field evaluation and validation using the Girona 500 AUV. In this regard, the algorithm has been tested in different scenarios, such as a harbor structure, a breakwater structure, and an underwater boulder.  相似文献   

6.
This paper addresses the problem of autonomous cooperative localization, grasping and delivering of colored ferrous objects by a team of unmanned aerial vehicles (UAVs). In the proposed scenario, a team of UAVs is required to maximize the reward by collecting colored objects and delivering them to a predefined location. This task consists of several subtasks such as cooperative coverage path planning, object detection and state estimation, UAV self‐localization, precise motion control, trajectory tracking, aerial grasping and dropping, and decentralized team coordination. The failure recovery and synchronization job manager is used to integrate all the presented subtasks together and also to decrease the vulnerability to individual subtask failures in real‐world conditions. The whole system was developed for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017, where it achieved the highest score and won Challenge No. 3—Treasure Hunt. This paper does not only contain results from the MBZIRC 2017 competition but it also evaluates the system performance in simulations and field tests that were conducted throughout the year‐long development and preparations for the competition.  相似文献   

7.
Micro aerial vehicles (MAVs), especially quadrotors, have been widely used in field applications, such as disaster response, field surveillance, and search‐and‐rescue. For accomplishing such missions in challenging environments, the capability of navigating with full autonomy while avoiding unexpected obstacles is the most crucial requirement. In this paper, we present a framework for online generating safe and dynamically feasible trajectories directly on the point cloud, which is the lowest‐level representation of range measurements and is applicable to different sensor types. We develop a quadrotor platform equipped with a three‐dimensional (3D) light detection and ranging (LiDAR) and an inertial measurement unit (IMU) for simultaneously estimating states of the vehicle and building point cloud maps of the environment. Based on the incrementally registered point clouds, we online generate and refine a flight corridor, which represents the free space that the trajectory of the quadrotor should lie in. We represent the trajectory as piecewise Bézier curves by using the Bernstein polynomial basis and formulate the trajectory generation problem as a convex program. By using Bézier curves, we can constrain the position and kinodynamics of the trajectory entirely within the flight corridor and given physical limits. The proposed approach is implemented to run onboard in real‐time and is integrated into an autonomous quadrotor platform. We demonstrate fully autonomous quadrotor flights in unknown, complex environments to validate the proposed method.  相似文献   

8.
Rovers operating on Mars require more and more autonomous features to fulfill their challenging mission requirements. However, the inherent constraints of space systems render the implementation of complex algorithms an expensive and difficult task. In this paper, we propose an architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the ExoMars path following navigation approach to enhance the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform significantly longer traverses planned by operators on the ground. The efficient navigation approach has been implemented and tested during field test campaigns on a planetary analogue terrain. The experiments evaluated the proposed architecture by autonomously completing several traverses of variable lengths while avoiding hazards. The approach relies only on the optical Localization Cameras stereo bench, a sensor that is found in all current rovers, and potentially allows for computationally inexpensive long‐range autonomous navigation in terrains of medium difficulty.  相似文献   

9.
Cataglyphis: An autonomous sample return rover   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper presents the design of Cataglyphis, a research rover that won the NASA Sample Return Robot Centennial Challenge in 2015. During the challenge, Cataglyphis was the only robot that was able to autonomously find, retrieve, and return multiple types of samples in a large natural environment without using Earth‐specific sensors such as GPS and magnetic compasses. It navigates through a fusion of measurements collected from inertial sensors, wheel encoders, a nodding Lidar, a set of ranging radios, a camera on a panning platform, and a sun sensor. In addition to visual detection of a homing beacon, computer vision algorithms provide the sample detection, identification, and localization capabilities, with low false positive and false negative rates demonstrated during the competition. The mission planning and control software enables robot behaviors, determines sequences of actions, and helps the robot to recover from various failure conditions. A compliant, under‐actuated manipulator conforms to the natural terrain before picking up samples of various size, weight, and shape.  相似文献   

10.
One of the steps to provide fundamental data for planning a mining effort is the magnetic surveying of a target area, which is typically carried out by conventional aircraft campaigns. However, besides the high cost, fixed‐wing aerial vehicles present shortcomings especially for drape flights on mountainous regions, where steep slopes are often present. Traditional human‐crewed flights have to perform tedious and dangerous trajectories, under strict velocity and attitude constraints. In this paper, we deal with the problem of accomplishing digital magnetic‐elevation maps using autonomous and cooperative aerial robots. The proposed approach for autonomous mapping utilizes a custom‐built fluxgate sensor and off the shelf cameras adapted for small airborne platforms. We also propose an innovative approach for generating a digital magnetic‐elevation model from the gathered data. Our method was evaluated and validated in field tests in an industrial scenario to detect scrap metals in ore piles. Results show that the proposed method could reliably detect magnetic anomalies while generating accurate three‐dimensional magnetic maps.  相似文献   

11.
We present an open‐source system for Micro‐Aerial Vehicle (MAV) autonomous navigation from vision‐based sensing. Our system focuses on dense mapping, safe local planning, and global trajectory generation, especially when using narrow field‐of‐view sensors in very cluttered environments. In addition, details about other necessary parts of the system and special considerations for applications in real‐world scenarios are presented. We focus our experiments on evaluating global planning, path smoothing, and local planning methods on real maps made on MAVs in realistic search‐and‐rescue and industrial inspection scenarios. We also perform thousands of simulations in cluttered synthetic environments, and finally validate the complete system in real‐world experiments.  相似文献   

12.
This study presents computer vision modules of a multi‐unmanned aerial vehicle (UAV) system, which scored gold, silver, and bronze medals at the Mohamed Bin Zayed International Robotics Challenge 2017. This autonomous system, which was running completely on board and in real time, had to address two complex tasks in challenging outdoor conditions. In the first task, an autonomous UAV had to find, track, and land on a human‐driven car moving at 15 km/hr on a figure‐eight‐shaped track. During the second task, a group of three UAVs had to find small colored objects in a wide area, pick them up, and deliver them into a specified drop‐off zone. The computer vision modules presented here achieved computationally efficient detection, accurate localization, robust velocity estimation, and reliable future position prediction of both the colored objects and the car. These properties had to be achieved in adverse outdoor environments with changing light conditions. Lighting varied from intense direct sunlight with sharp shadows cast over the objects by the UAV itself, to reduced visibility caused by overcast to dust and sand in the air. The results presented in this paper demonstrate good performance of the modules both during testing, which took place in the harsh desert environment of the central area of United Arab Emirates, as well as during the contest, which took place at a racing complex in the urban, near‐sea location of Abu Dhabi. The stability and reliability of these modules contributed to the overall result of the contest, where our multi‐UAV system outperformed teams from world’s leading robotic laboratories in two challenging scenarios.  相似文献   

13.
This paper presents the planning of a near-optimum path and location of a workpiece by genetic algorithms. The purpose of this planning is to minimize the processing time required for a robot to complete its work on a workpiece. The location of the workpiece can be anywhere by translating it along any direction and by rotating it about the fixedz-axis of the robot coordinate system. Owing to the changeable location of the workpiece and the alterable motion time required for a robot to move between two workpoints, the path and location planning problem is much more complicated than the travelling salesman problem. It is definitely impossible to obtain an optimum path and location within an acceptable time. In this paper, genetic algorithms are applied to solve this problem. The location of the workpiece is defined by three position parameters and one angular parameter, and the path is determined based on the values of the parameters for all workpoints. All the path and location parameters are encoded into a binary string. They are modified simultaneously by genetic algorithms to search for a global solution. As the workpiece can be anywhere, a penalty function is used to prevent the selection of illegal paths. Two experiments are given to show the performance of genetic algorithms: one has 30 workpoints and the other has 50 workpoints. Compared with four human-generated plannings, planning by genetic algorithms has much better performance in minimizing the processing time.  相似文献   

14.
Aerial cinematography is revolutionizing industries that require live and dynamic camera viewpoints such as entertainment, sports, and security. However, safely piloting a drone while filming a moving target in the presence of obstacles is immensely taxing, often requiring multiple expert human operators. Hence, there is a demand for an autonomous cinematographer that can reason about both geometry and scene context in real‐time. Existing approaches do not address all aspects of this problem; they either require high‐precision motion‐capture systems or global positioning system tags to localize targets, rely on prior maps of the environment, plan for short time horizons, or only follow fixed artistic guidelines specified before the flight. In this study, we address the problem in its entirety and propose a complete system for real‐time aerial cinematography that for the first time combines: (a) vision‐based target estimation; (b) 3D signed‐distance mapping for occlusion estimation; (c) efficient trajectory optimization for long time‐horizon camera motion; and (d) learning‐based artistic shot selection. We extensively evaluate our system both in simulation and in field experiments by filming dynamic targets moving through unstructured environments. Our results indicate that our system can operate reliably in the real world without restrictive assumptions. We also provide in‐depth analysis and discussions for each module, with the hope that our design tradeoffs can generalize to other related applications. Videos of the complete system can be found at https://youtu.be/ookhHnqmlaU .  相似文献   

15.
We present results from sea trials for an autonomous surface vehicle (ASV) equipped with a collision avoidance system based on model predictive control (MPC). The sea trials were performed in the North Sea as part of an ASV Challenge posed by Deltares through a Dutch initiative involving different authorities, including the Ministry of Infrastructure and Water Management, the Netherlands Coastguard, and the Royal Netherlands Navy. To allow an ASV to operate in a maritime environment governed by the International Regulations for Preventing Collisions at Sea (COLREGs), the ASV must be capable of complying with COLREGs. Therefore, the sea trials focused on verifying COLREGs‐compliant behavior of the ASV in different challenging scenarios using automatic identification system (AIS) data from other vessels. The scenarios cover situations where some obstacle vessels obey COLREGs and emergency situations where some obstacles make decisions that increase the risk of collision. The MPC‐based collision avoidance method evaluates a combined predicted collision and COLREGs‐compliance risk associated with each obstacle and chooses the ‘best’ way out of dangerous situations. The results from the verification exercise in the North Sea show that the MPC approach is capable of finding safe solutions in challenging situations, and in most cases demonstrates behaviors that are close to the expectations of an experienced mariner. According to Deltares’ report, the sea trials have shown in practice that the technical maturity of autonomous vessels is already more than expected.  相似文献   

16.
17.
While multi-robot cells are being used more often in industry, the problem of work-piece position optimization is still solved using heuristics and the human experience and, in most industrial cases, even a feasible solution takes a considerable amount of trials to be found. Indeed, the optimization of a generic performance index along a path is complex, due to the dimension of the feasible-configuration space. This work faces this challenge by proposing an iterative layered-optimization method that integrates a Whale Optimization and an Ant Colony Optimization algorithm, the method allows the optimization of a user-defined objective function, along a working path, in order to achieve a quasi-optimal, collision free solution in the feasible-configuration space.  相似文献   

18.
Robotic Autonomy is a seven-week, hands-on introduction to robotics designed for high school students. The course presents a broad survey of robotics, beginning with mechanism and electronics and ending with robot behavior, navigation and remote teleoperation. During the summer of 2002, Robotic Autonomy was taught to twenty eight students at Carnegie Mellon West in cooperation with NASA/Ames (Moffett Field, CA). The educational robot and course curriculum were the result of a ground-up design effort chartered to develop an effective and low-cost robot for secondary level education and home use. Cooperation between Carnegie Mellon's Robotics Institute, Gogoco, LLC. and Acroname Inc. yielded notable innovations including a fast-build robot construction kit, indoor/outdoor terrainability, CMOS vision-centered sensing, back-EMF motor speed control and a Java-based robot programming interface. In conjunction with robot and curriculum design, the authors at the Robotics Institute and the University of Pittsburgh's Learning Research and Development Center planned a methodology for evaluating the educational efficacy of Robotic Autonomy, implementing both formative and summative evaluations of progress as well as an in-depth, one week ethnography to identify micro-genetic mechanisms of learning that would inform the broader evaluation. This article describes the robot and curriculum design processes and then the educational analysis methodology and statistically significant results, demonstrating the positive impact of Robotic Autonomy on student learning well beyond the boundaries of specific technical concepts in robotics.  相似文献   

19.
The work reported in this article describes the research advances and the lessons learned by the Robotics, Perception and Real‐Time group over a decade of research in the field of ground robotics in confined environments. This study has primarily focused on localization, navigation, and communications in tunnel‐like environments. As will be discussed, this type of environment presents several special characteristics that often make well‐established techniques fail. The aim is to share, in an open way, the experience, errors, and successes of this group with the robotics community so that those that work in such environments can avoid (some of) the errors made. At the very least, these findings can be readily taken into account when designing a solution, without needing to sift through the technical details found in the papers cited within this text.  相似文献   

20.
Although a considerable amount of effort has been put in to show that fuzzy logic controllers have exceptional capabilities of dealing with uncertainty, there are still noteworthy concerns, e.g., the design of fuzzy logic controllers is an arduous task due to the lack of closed-form input–output relationships which is a limitation to interpretability of these controllers. The role of design parameters in fuzzy logic controllers, such as position, shape, and height of membership functions, is not straightforward. Motivated by the fact that the availability of an interpretable relationship from input to output will simplify the design procedure of fuzzy logic controllers, the main aims in this work are derive fuzzy mappings for both type-1 and interval type-2 fuzzy logic controllers, analyse them, and eventually benefit from such a nonlinear mapping to design fuzzy logic controllers. Thereafter, simulation and real-time experimental results support the presented theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号