首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microgrid is an effective solution to enhance the integration of distributed renewable energy resources, which can operate both in grid connected mode and islanded mode. In order to reduce the jumps of the system variables within acceptable limits to ensure the system has good transient performance and power quality in multiple operating modes, seamless transfer is the key problem to be considered. In this paper, due to the different multiple equilibrium points for the two operating modes, the dynamics of every operating mode re modeled as a subsystem with all the variables that are needed to be synchronized. Linearization is carried out respectively for the two operation modes on the different equilibriums in a state‐space form based on the small‐signal stability method. To reduce the conservatism of the unified controller, the concept of the relative Lyapunov function is introduced to derive a multiple segmental Lyapunov method and a robust feedback mode‐dependent switching controller is designed to achieve smooth transfer by making the deviation energy of the two modes both converge to the zero point. To rapidly detect the switching signal, a sparse communication network is introduced by the use of low bandwidth communication links to broadcast the switching signal to each distributed controller. Finally, two microgrid test systems were built in SIMULINK to show the feasibility and effectiveness of the proposed seamless transfer control strategies.  相似文献   

2.
The event‐based control strategy is an effective methodology for reducing the controller update and communication over the network. In this paper, the event‐based consensus of multi‐agent systems with linear dynamics and time‐varying topology is studied. For each agent, a state‐dependent threshold with an exponentially decaying bound is presented to determine the event times, and a new event‐based dynamic feedback scheme is proposed. It is shown that the controller update for each agent is only dependent on its own event times, which reduces significantly the controller update or computation for each agent. Moreover, based on the event‐based dynamic feedback scheme and the event triggering function presented in this paper, the continuous communication among neighboring agents is avoided, and the Zeno‐behavior of the closed‐loop systems is excluded. A numerical example is given to illustrate the effectiveness of theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Robust controller design for a flow control problem where uncertain multiple time‐varying time‐delays exist is considered. Although primarily data‐communication networks are considered, the presented approach can also be applied to other flow control problems and can even be extended to other control problems where uncertain multiple time‐varying time‐delays exist. Besides robustness, tracking and fairness requirements are also considered. To solve this problem, an ?? optimization problem is set up and solved. Unlike previous approaches, where only a suboptimal solution could be found, the present approach allows to design an optimal controller. Simulation studies are carried out in order to illustrate the time‐domain performance of the designed controllers. The obtained results are also compared to the results of a suboptimal controller obtained by an earlier approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The paper addresses the distributed event‐triggered consensus problem in directed topologies for multi‐agent systems (MAS) with general linear dynamic agents. A co‐design approach is proposed to determine parameters of the consensus controller and its event‐triggered mechanism (ETM), simultaneously. This approach guarantees asymptotic stability along with decreasing data transmission among agents. In the proposed event‐based consensus controller, each agent broadcasts data to the neighbors only at its own triggering instants; this differs from previous studies in which continuous data streams among agents were required. Furthermore, the proposed control law is based on the piecewise constant functions of the measurement values, which are updated at triggering instants. In this case the control scheme decreases the communication network usage, energy consumption, and wear of the actuator. As a result, it facilitates distributed implementation of the proposed consensus controller for real‐world applications. A theorem is proved to outline sufficient conditions to guarantee the asymptotic stability of the closed‐loop system with the event‐based consensus controller. Another theorem is also proved to show the Zeno behavior exclusion. As a case study, the proposed event‐based controller is applied for a diving consensus problem to illustrate the effectiveness of the method.  相似文献   

5.
Vector‐valued controller cost functions that are solely data‐dependent and reflect multiple objectives of a control system are examined within the framework of unfalsified adaptive control. The notion of Pareto optimality of vector‐valued cost functions and the conditions under which they are cost‐detectable are discussed. A sampled data/discrete‐time Level‐Set controller switching algorithm is investigated which allows for the relaxation of the assumption that the controller cost function be monotonically nondecreasing in time. This opens up the possibility of the use of fading memory cost functions which are nonmonotone. When an active controller is falsified at the current threshold cost level, the Level‐Set switching algorithm replaces it by an effectively unique solution of the weighted Tchebycheff method, thus ensuring the selection of an unfalsified Pareto optimal controller. Theoretical results for convergence and stability of the adaptive system are given. Simulation results validate the use of cost‐detectable multi‐objective cost functions. An example of a cost‐detectable cost function which uses fading memory norm of the fictitious tracking error as a performance measure is shown. This allows for computation of performance of nonactive controllers with respect to a reference model.  相似文献   

6.
This paper studies the leader‐following consensus problem for Lipschitz nonlinear multi‐agent systems using novel event‐triggered controllers. A distributed adaptive law is introduced for the event‐based control strategy design such that the proposed controllers are independent of system parameters and only use the relative states of neighboring agents, and hence are fully distributed. Due to the introduction of an event‐triggered control scheme, the controller of the agent is only triggered at it's own event times, and thus reduces the amount of communication between controller and actuator and lowers the frequency of controller updates in practice. Based on a quadratic Lyapunov function, the event condition which uses only neighbor information and local computation at trigger instants is established. Infinite triggers within a finite time are also verified to be impossible. The effectiveness of the theoretical results are illustrated through simulation examples.  相似文献   

7.
For the adversarial attacks on the communication links from the controller to the actuators, most of the existing attack‐resilient control results focus on denial‐of‐service attacks. Unlike the existing results, this paper studies the observer‐based attack‐resilient control problem for linear systems with false data injection attacks and process disturbances. Due to limited resources, the malicious attacker is assumed to only manipulate a certain number of communication links from the controller to the actuators. A novel control architecture is proposed, which consists of an attack‐resilient state observer, a controller gain scheme, and a supervisory switching strategy. The observer is developed based on the maximin strategy, and state estimation will be used to construct the controller. The switching strategy is designed to pick an appropriate controller gain and prevent the attack signals from entering the plant automatically. It is shown that the closed‐loop system is stable with an attack‐resilient performance. Finally, to verify the effectiveness of the proposed controller, simulation results on a linearized reduced‐order aircraft system and an IEEE six‐bus power system are provided.  相似文献   

8.
This paper focuses on the event‐based distributed robust leaderless synchronization control for multiple Euler‐Lagrange systems with directed communication topology that contains a directed spanning tree. Update frequency of the system is reduced by taking advantages of the event‐triggered approach, which can help extend the service life of the controller. Robust control theory is employed to guarantee the synchronization stability of the networked Euler‐Lagrange systems when unmodeled dynamics occur. The cost on the distributed synchronization protocol design can be saved due to the relaxation of the requirement on relative velocity measurements. Furthermore, our results are more practical because unknown disturbance is taken into consideration. In addition, it can be rigorously analyzed that each agent can exclude the undesired Zeno behavior. Some simulation examples are provided in the end to demonstrate the effectiveness of the proposed event‐based distributed robust control algorithm.  相似文献   

9.
This paper considers the distributed event‐triggered consensus problem for multi‐agent systems with general linear dynamics under a directed graph. We propose a novel distributed event‐triggered consensus controller with state‐dependent threshold for each agent to achieve consensus. In this strategy, continuous communication in both controller update and triggering condition monitoring is not required, which means the proposed strategy is fully continuous communication free. Each agent only needs to monitor its own state continuously to determine if the event is triggered. Additionally, the approach shown here provides consensus with guaranteed positive inter‐event time intervals. Therefore, there is no Zeno behavior under the proposed consensus control algorithm. Finally, numerical simulations are given to illustrate the theoretical results.  相似文献   

10.
This paper addresses the finite‐time and the prescribed finite‐time event‐triggered consensus tracking problems for second‐order multi‐agent systems (MASs) with uncertain disturbances. The prescribed finite‐time event‐triggered consensus of the second‐order disturbed MASs was obtained for the first time and the controller is nonsingular. Furthermore, a new self‐triggered control scheme is presented for the finite‐time consensus tracking, and the continuous communication can be avoided in the triggering condition monitoring. Hence, the finite‐time consensus tracking can be achieved with intermittent communication. Moreover, Zeno behavior is excluded for each follower. The efficiency of the proposed algorithms is verified by numerical simulations.  相似文献   

11.
This paper presents a new sporadic control approach to the tracking problem for MIMO closed‐loop systems. An LTI sampled data plant with unmeasurable state affected by external unknown disturbances is considered. The plant is interconnected to an event‐based digital dynamic output‐feedback controller via a network. Both the external reference and the unknown disturbance are assumed to be generated as the free output response of unstable LTI systems. The main feature of the new event‐driven communication logic (CL) is that it works without the strict requirement of a state vector available for measurement. The purpose of the CL is to reduce as much as possible the number of triggered messages along the feedback and feedforward paths with respect to periodic sampling, still preserving internal stability and without appreciably degrading the control system tracking capability. The proposed event‐driven CL is composed of a sensor CL (SCL) and of a controller CL (CCL). The SCL is based on the computation of a quadratic functional of the tracking error and of a corresponding suitably computed time‐varying threshold: a network message from the sensor to the controller is triggered only if the functional equals or exceeds the current value of the threshold. The CCL is directly driven by the SCL: the dynamic output controller sends a feedforward message to the plant only if it has received a message from the sensor at the previous sampled instant. Formulation of the controller in discrete‐time form facilitates its implementation and provides a minimum inter‐event time given by the sampling period. An example taken from the related literature shows the effectiveness of the new approach. The focus of this paper is on the stability and performance loss problems relative to the sporadic nature of the control law. Other topics such as network delay or packets dropout are not considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This article investigates the event‐triggered (ET) states feedback robust control problem for a class of continuous‐time networked semi‐Markov jump systems (S‐MJSs). An ET scheme, which depends on semi‐Markov process, is presented to design a suitable controller and save communication resources. To cope with the network transmission delay phenomenon, a time‐delay S‐MJSs model under the ET scheme is introduced to describe this phenomenon. Then, it is assumed that the communication links between event detector and zero‐order holder are imperfect, where the signal quantization and the actuator fault occur simultaneously. The sufficient conditions are derived by means of linear matrix inequalities approach, which guarantees the stochastic stability of the constructed time‐delay S‐MJSs in an optimized performance level. Based on these criteria, the parameters of controller under the ET scheme are readily calculated. Some simulation results with respect to F‐404 aircraft engine system for two kinds of ET parameters are given to validate the proposed method.  相似文献   

15.
In this article, we address the problem of output stabilization for a class of nonlinear time‐delay systems. First, an observer is designed for estimating the state of nonlinear time‐delay systems by means of quasi‐one‐sided Lipschitz condition, which is less conservative than the one‐sided Lipschitz condition. Then, a state feedback controller is designed to stabilize the nonlinear systems in terms of weak quasi‐one‐sided Lipschitz condition. Furthermore, it is shown that the separation principle holds for stabilization of the systems based on the observer‐based controller. Under the quasi‐one‐sided Lipschitz condition, state observer and feedback controller can be designed separately even though the parameter (A,C) of nonlinear time‐delay systems is not detectable and parameter (A,B) is not stabilizable. Finally, a numerical example is provided to verify the efficiency of the main results.  相似文献   

16.
In this paper, the feedback passivity‐based control of nonlinear discrete time‐delay systems for variable geometry truss manipulators is investigated. To determine an appropriate communication channel in the sense of feedback passivation, we first model the dynamics of the variable geometry truss manipulator as a generalized discrete nonlinear system with time‐delay. Then we further prove that when the infinite norm of estimated error is bounded, as long as there is a controller enables the closed‐loop system to be input‐strictly passive, there must be a deterministic equivalent controller to ensure that the system is stochastically quasi passive. After that, on the basis of the conclusion obtained, a more conclusive corollary is addressed for linear plants. Though passivity is a stricter condition than stability, feedback passivation does not impose more restrictions on estimate errors, and therefore does not require more communication channel information than mean square stability. Finally, we simplify the variable geometry truss dynamics to a linear plant to simulate to verify the validity of our method, and also compared the experimental results with the methods in the existing literature.  相似文献   

17.
This paper presents an event‐triggered predictive control approach to stabilize a networked control system subject to network‐induced delays and packet dropouts, for which the states are not measurable. An observer‐based event generator is first designed according to the deviation between the state estimation at the current time and the one at the last trigger time. A predictive control scheme with a selector is then proposed to compensate the effect of network‐induced delays and packet dropouts. Sufficient conditions for stabilization of the networked control system are derived by solving linear matrix inequalities and the corresponding gains of the controller and the observer are obtained. It is shown that the event‐triggered implementation is able to realize reduction in communication and save bandwidth resources of feedback channel networks. A simulation example of an inverted pendulum model illustrates the efficacy of the proposed scheme.  相似文献   

18.
The problem of output control in multiple‐input–multiple‐output nonlinear systems is addressed. A high‐order sliding‐mode observer is used to estimate the states of the system and identify the discrepancy between the nominal model and the real plant. The exact and finite‐time estimation may be tackled as long as the system presents the algebraic strong observability property. Thus, a continuous robust input‐output linearization strategy can be obtained with respect to a prescribed output. As a consequence, the closed‐loop dynamics performs robustly to uncertainties/perturbations. To illustrate the advantages of the proposed method, we introduce a study case that demands a robust linear system behavior: the self‐oscillations induced in an underactuated mechanical system through a two‐relay controller. Experiments with an inertial wheel pendulum illustrate the feasibility of the proposed approach.  相似文献   

19.
This paper presents the sliding‐mode control of a three‐degrees‐of‐freedom nanopositioner (Z, θx, θy). This nanopositioner is actuated by piezoelectric actuators. Capacitive gap sensors are used for position feedback. In order to design the feedback controller, the open‐loop characteristics of this nanopositioner are investigated. Based on the results of the investigation, each pair of piezoelectric actuators and corresponding gap sensors is treated as an independent system and modeled as a first‐order linear model coupled with hysteresis. When the model is identified and the hysteresis nonlinearity is linearized, a linear system model with uncertainty is used to design the controller. When designing the controller, the sliding‐mode disturbance (uncertainty) estimation and compensation scheme is used. The structure of the proposed controller is similar to that of a proportional integral derivative controller. Thus, it can be easily implemented. Experimental results show that 3‐nm tracking resolution can be obtained. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
According to some recent results, use of non‐causal uncertainty blocks may be advantageous in the robust controller design of systems with multiple uncertain time‐delays. In this work, performance and robustness improvements obtained by utilizing such an approach are presented. The flow controller design problem for networks with multiple uncertain time‐delays is considered as a case study. It is shown that higher performance levels and larger stability margins are, in general, obtained by using non‐causal uncertainty blocks. A number of simulations, which illustrate the time‐domain performance improvement, are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号