共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is a chemically resistant polymer and, therefore, an attractive material for the formation of membranes. However, membranes of unmodified PPO prepared by an immersion precipitation possess very low hydraulic permeabilities at the filtration processes. The membranes with higher hydraulic permeabilities can be prepared from sulfonated PPO and/or from blends of unsulfonated PPO and sulfonated PPO. In conclusion, the mechanism of the formation of membranes from blends of unsulfonated PPO and sulfonated PPO is suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 161–167, 1999 相似文献
2.
The structure and mechanical properties of highly oriented films of a miscible blend of syndiotactic polystyrene and poly(2,6‐dimethylphenylene‐1,4‐oxide) (sPS/PPO) were studied in the composition range of sPS/PPO = 10/0 to 5/5. The oriented films were prepared by stretching the amorphous films of the blends. Wide‐angle X‐ray diffraction and polarized FTIR spectroscopy were used to analyze the amount of mesophase and molecular orientation. Drawing of the amorphous films of sPS and sPS/PPO blend induced a highly oriented mesophase. The mesophase content increases with increasing draw ratio and becomes nearly constant above a draw ratio of 3. Under the same draw ratio, the mesophase content decreases with increasing PPO content. The orientation function in the mesophase is as high as 0.95–0.99 irrespective of the composition and draw ratio. On the other hand, the orientation of molecular chains in the amorphous phase and mesophase increases with increasing draw ratio, and it decreases with increasing PPO content. The drawn films of pure sPS show high strength and high modulus in the drawing direction, but exhibit low strength in the direction perpendicular to the drawing. In the case of sPS/PPO = 7/3 blend, however, the ultimate strength in the perpendicular direction was dramatically improved compared with that of pure sPS and the ultimate strength in the parallel direction was similar to that for the oriented pure sPS. The improved mechanical properties in the sPS/PPO blends were discussed in relation to the structural characteristics of the sPS/PPO blend system. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:2789–2797, 2004 相似文献
3.
4.
Jan Schauer Wolfgang Albrecht Thomas Weigel Vlastimil Kdela Zbynek Pientka 《应用聚合物科学杂志》2001,81(1):134-142
Membranes were prepared from solutions containing Udel‐type polysulfone (PSf) and sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Polymer solutions in 1‐methyl‐2‐pyrrolidone were cast on a nonwoven textile and precipitated in a water bath. The permeabilities and selectivities of the prepared membranes depended on the concentrations of both polymers in the casting solution. The higher the concentration of PSf, the lower were the permeabilities to water and average pore sizes of the membranes. On the other hand, a very small amount of SPPO in the casting solution (about 1–4 wt % relative to the casting solution weight) brought about a considerable increase in water permeabilities and had a small influence on the average pore sizes. The effects were most pronounced if SPPO with a degree of sulfonation of 20–40% was used. The considerable increase in water permeabilities was explained by separation of the PSf and SPPO phases during precipitation in water and by the concentration of hydrophilic SPPO on the surface of the membrane and its pores. The determinations of the oriented concentration potentials proved the presence of a negative surface charge in the membranes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 134–142, 2001 相似文献
5.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000 相似文献
6.
Blends of a poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)/polyamide 6 (PA 6) alloy toughened with a novel polyolefin elastomer poly(ethylene‐1‐octene) (POE) were prepared via melt extrusion. In order to improve the compatibilization between POE and the PPO/PA 6 alloy, POE was grafted with maleic anhydride (MA), which could react with the amine group of PA 6. The Izod impact strength of the blends exhibited an optimum when the extent of MA grafting of POE was changed, which is an order of magnitude higher than that of the untoughened blends. The morphology revealed that the size of the POE particles decreased with an increasing MA grafting ratio of POE. Studies on the tensile properties and rheology of the blends were also carried out. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3110–3116, 2003 相似文献
7.
Xin‐Gui Li 《应用聚合物科学杂志》1999,71(11):1887-1892
The thermal degradation and kinetics of poly(2,6‐dimethylphenylene oxide) (PPO) were studied by high‐resolution thermogravimetry. The thermogravimetry measurements were conducted at an initial heating rate of 50°C min−1, resolution 4.0, and sensitivity 1.0 in both nitrogen and air from room temperature to 900°C. A two‐step degradation process was clearly revealed in air at the temperatures of 430°C and 521°C. The thermal degradation temperatures and kinetic parameters of the PPO appear to be higher in air than in nitrogen, indicative of a higher thermostability in air. The temperature, activation energy, order, and frequency factor of the thermal degradation of the PPO in nitrogen are 419°C, 100–120 kJ mol−1, 0.5, and 13–17 min−1, respectively. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1887–1892, 1999 相似文献
8.
Tongwen Xu Dan Wu Seok‐Jun Seo Jung‐Je Woo Liang Wu Seung‐Hyeon Moon 《应用聚合物科学杂志》2012,124(4):3511-3519
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
9.
Lara Finelli Cesare Lorenzetti Massimo Messori Laura Sisti Micaela Vannini 《应用聚合物科学杂志》2004,91(3):1887-1892
The miscibility behavior of poly(vinyl phenyl ketone hydrogenated) (PVPhKH) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) are studied by differential scanning calorimetry, thermomechanical analysis, and FTIR spectroscopy. Two miscibility windows between 10 to 40 and 60 to 90 wt % PPO are detected. Only the blend with 50 wt % PPO is immiscible. The best fit of the Gordon–Taylor equation of the experimental glass‐transition temperatures for miscible PVPhKH/PPO blends is shown. A study by FTIR spectroscopy suggests that hydrogen bonding interactions are formed between the hydroxyl groups of PVPhKH and the ether groups of PPO. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1887–1892, 2004 相似文献
10.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
The sulfonation reaction of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) has been carried out, incorporating the resulting product into pure PPO to study, in forthcoming research, the electrical and mechanical features of the composites with regard to their performance in fuel cells. Pure sulfonated polymers and their blends have been characterized from a microstructural and electrical point of view, by means of X‐ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) and complex impedance spectroscopy. Membranes have been manufactured with excellent ionic conductivity at room temperature. © 2000 Society of Chemical Industry 相似文献
12.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) of different intrinsic viscosities has been studied to understand the effect of polymer molecular weight on the permeability and permeability ratio of CO2/CH4 and O2/N2 gas pairs. The increase in permeability of dense films prepared from higher molecular weight PPO was explained in terms of increased free volume. Gas permeability for the high molecular weight was further improved by attaching bulky bromine groups to the phenyl ring of the PPO backbone. Permeability ratio of PPO was greatly improved by attaching polar groups such as —COOH or —SO3H. The loss in permeability because of the presence of the polar groups was compensated by using PPO that was brominated and sulfonated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1137–1143, 2000 相似文献
13.
Francesco Picchioni Emanuele Casentini Elisa Passaglia Giacomo Ruggeri 《应用聚合物科学杂志》2003,88(11):2698-2705
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003 相似文献
14.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002 相似文献
15.
Shiwen Lin Shuangyue Sun Yadong He Xiaodong Wang Dezhen Wu 《Polymer Engineering and Science》2012,52(5):927-936
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)‐based compounds containing resorcinol bis(diphenyl phosphate) (RDP) and poly(dimethyl‐diphenyl siloxane) (PDMDPS) were prepared through melt extrusion, and their flammability characteristics and mechanical properties were evaluated. The incorporation of RDP enhanced the flame retardancy of PPO compounds, but hardly made them obtain the UL 94 V‐0 rating unless RDP and PDMDPS were combined. Studies on the residual chars after vertical burning test suggested that the excellent flame retardancy be correlated with the retention from the combination effects of silica and phosphate in the char, whose cross‐linked silica enhanced the formation of a compact char to retard combustion. Thermogravimetric analysis indicated that the presence of PDMDPS and RDP improved the char yielding as well as the decomposition temperature of PPO compounds. Moreover, the Izod impact strength was improved significantly in the presence of RDP and PDMDPS, and this toughening effect was attributed to the deformation and multiple cracks induced by PDMDPS, which enhances the impact energy absorption of the matrix. This work provides a very effective flame retarding formulation for PPO compounds with improved impact toughness. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers 相似文献
16.
Low‐molecular‐weight poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) with unimodal polydispersity was synthesized by oxidative polymerization of 2,6‐dimethylphenol in the presence of Cu‐ethylene diamine tetraacetic acid catalyst in water. A series of low‐molecular‐weight PPO oligomers with Mn ranged from 360 to 3500 were obtained. It was found that the molecular weight and polydispersity were affected by reaction time, reaction temperature, and catalyst concentration. Based on the detector response‐elution volume curve and the molecular weight from gel permeation chromatography, a possible molecular weight growth mechanism was proposed. The structure and properties of low‐molecular‐weight PPO oligomers were characterized by atomic absorption spectroscopy, differential scanning calorimetry, Ubbelohde viscometer, and nuclear magnetic resonance spectroscopy. Compared to the commercial low‐molecular‐weight PPO, PPO oligomers synthesized in water had a much lower residual copper content. The relationships between Tg and Mn at relatively low‐molecular weight are in good agreement with the equation proposed by Fox and Loshack. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
17.
Holger Ruckdäschel Julius Rausch Jan K.W. Sandler Volker Altstädt Holger Schmalz Axel H.E. Müller 《Polymer Engineering and Science》2008,48(11):2111-2125
Immiscible blends of poly(2,6‐dimethyl‐1,4‐phenylene ether)/poly(styrene‐co‐acrylonitrile) (PPE/SAN) were batch‐foamed using CO2 as a blowing agent as a function of foaming temperature, foaming time, and blend composition. Evaluation of the resulting cellular morphology revealed an enhanced foamability of SAN with PPE contents up to 20 wt% as indicated by a similar volume expansion but a significantly reduced mean cell size. This behavior is related to a heterogeneous nucleation activity by the dispersed PPE phase. A further increasing PPE content, however, leads to increasing foam densities as well as nonuniform foam morphologies. The changes in the foaming behavior can be correlated with the melt rheological properties and the corresponding blend morphology. Shear‐rheological investigations revealed an onset of percolation of the dispersed PPE phase between 20 and 40 wt%, and a transition towards cocontinuity at 60 wt%. The materials response under uniaxial elongational flow, as assessed by Rheotens measurements, revealed an increase in elongational viscosity scaling with the PPE content, similar to the shear data. However, the strain hardening behavior was reduced by increasing PPE contents and, at 20 wt%, the drawability revealed a significant drop‐both phenomena limiting the foamability of polymers. In summary, the present study discusses fundamental aspects of foaming immiscible PPE/SAN blends. POLYM. ENG. SCI., 48:2111–2125, 2008. © 2008 Society of Plastics Engineers 相似文献
18.
B. García-Gaitán M. del P. Pérez-González M. C. Zárate-Acevedo A. Martínez-Richa G. Luna-Bárcenas S. M. Nuño-Donlucas 《应用聚合物科学杂志》2006,99(5):2124-2131
A series of poly(ether–ester) copolymers were synthesized from poly(2,6 dimethyl‐1,4‐phenylene oxide) (PPO) and poly(ethylene terephthalate) (PET). The synthesis was carried out by two‐step solution polymerization process. PET oligomers were synthesized via glycolysis and subsequently used in the copolymerization reaction. FTIR spectroscopy analysis shows the coexistence of spectral contributions of PPO and PET on the spectra of their ether–ester copolymers. The composition of the poly(ether–ester)s was calculated via 1H NMR spectroscopy. A single glass transition temperature was detected for all synthesized poly(ether–ester)s. Tg behavior as a function of poly(ether–ester) composition is well represented by the Gordon‐Taylor equation. The molar masses of the copolymers synthesized were calculated by viscosimetry. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006 相似文献
19.
Yang‐Chou Lin Hui‐Chuan Feng Ming‐Syun Yang Huai‐An Yu Chih‐Chiao Huang Mong Liang 《Polymer International》2012,61(5):719-726
New functionalized poly(2,6‐dimethyl‐1,4‐phenylene oxide)s (PPOs) containing ethylenic, aldehydic, hydroxyl and acrylate pendant groups were synthesized and their structure, properties and curing kinetics were investigated. The incorporation of polar functional groups resulted in an improvement in the glass transition temperature in the order aldehydic PPO > acrylate PPO > hydroxyl PPO > vinyl PPO > brominated PPO > pristine PPO. Upon thermal curing, the electron‐donating substituent in the vinyl PPO resulted in an increase in the activation energy in the order –Pr, –Bu > –Ph > –H, whereas the electron‐withdrawing substituent in the acrylate PPO caused a slight decrease in the activation energy. Copyright © 2011 Society of Chemical Industry 相似文献
20.
Partial crosslinking method for poly(2,6‐dimethyl‐1,4‐phenylene oxide)–poly(vinyl alcohol) membranes to obtain optimized stability and permeability 下载免费PDF全文
A partial crosslinking method was developed to modify hydrophilic membranes. The membrane was sandwiched between two porous plates to protect part of the areas, then immersed into a crosslinking solution such as glutaraldehyde, and finally, set free from the plates. The protected and unprotected areas were alternatively distributed to form a heterogeneous membrane. The unprotected areas were crosslinked to enhance the membrane stability, whereas the protected areas retained their original permeability. Three types of hydrophilic base membranes were selected and prepared from poly(2,6‐dimethyl‐1,4‐phenylene oxide) and poly(vinyl alcohol). The base membranes were partially crosslinked (5.56% of the direct area with enlarged areas) to investigate their stability and diffusion dialysis (DD) performances. The partially crosslinked membranes had remarkably reduced water uptake and swelling degrees compared with the base membranes (72.4–250.4 vs 178.2%–544.4% and 94.0%–408.0% vs. 163.8%–814.8%). Meanwhile, the membranes still retained high DD performances for separating HCl–FeCl2 or NaOH–NaAlO2 solutions. The dialysis coefficients of HCl and NaOH were much higher than those of the fully crosslinked membranes (0.0209 vs. 0.0109 m/h and 0.0059–0.0085 vs. 0.0017–0.0022 m/h). Hence, partial crosslinking was effective in optimizing the membrane hydrophilicity and permeability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45305. 相似文献