首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A series of new polyimides containing s‐triazine rings have been synthesized via Diels–Alder intermolecular polymerization of 2,6‐bis(2‐furanylmethylimino)‐4‐isopropoxy‐1,3,5‐triazine with various bis(maleimide)s. All the poly(imino‐s‐triazine imide)s were characterized by elemental analyses, FTIR spectral studies, number average molecular weight ( M n) by non‐aqueous conductometric titration and thermogravimetry. Glass‐fibre reinforced composites were prepared via an in situ Diels–Alder intermolecular reaction between 2,6‐bis(2‐furanylmethylimino)‐4‐isopropoxy‐1,3,5‐triazine and various bis(maleimide)s. The composites were characterized for chemical resistivity and mechanical properties. © 2003 Society of Chemical Industry  相似文献   

2.
We prepared pressure‐sensitive adhesive (PSA)‐containing cross‐linked siloxane powders (CS) as a reservoir for a transdermal drug delivery system (TDDS) and evaluated their sustained drug‐release properties. PSA, as a patch‐type adhesive, was synthesized by a hydrosilylation reaction of vinyl‐terminated polysiloxanes with hydrogen‐terminated polydimethylsiloxanes. CS was also prepared via a hydrosilylation process with vinyl‐terminated polydimethylsiloxane, 1,3,5,7‐tetramethyl‐1,3,5,7‐tetravinyltetracyclosiloxane ( ), hydrogen‐terminated polydimethylsiloxane, and dimethylhydrogenmethyl oligomeric siloxane copolymer. The results of release performances using ascorbic acid as a model drug showed a cumulative linear slope over a week, indicating a constant release performance. Our data suggest that this siloxane TDDS could be useful for constant drug release over a long period. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42154.  相似文献   

3.
Waste silicone cross‐linked polyethylene (Si‐XLPE) recycling effectively by using solid‐state shear mechanochemical (S3M) technology was investigated to make the better performance thermoplastic polyethylene. To make this thermoplastic material, the cross‐linked structures of waste Si‐XLPE that was consisted of the siloxane bonds must be de‐cross‐linked selectively instead of the destruction of the material main chains. The properties of recycled Si‐XLPE materials were investigated by gel fraction measurements, gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter, torque rheological measurements, scanning electron microscope (SEM) and thermogravimetric analyzer (TG). From the results, it could be seen that the cross‐linking bonds of the Si‐XLPE were destroyed selectively by S3M technology and the mechanochemical milling also played a significant role in improving the materials process‐ability and mechanical properties. Gel fraction measurements, GPC and FTIR showed that S3M technology could interrupt the cross‐linked structures of Si‐XLPE rather than the backbone chains by initiating the de‐cross‐linking reaction obviously; Torque rheological results further confirmed that the recycled Si‐XLPE materials gained better plastic characteristics and process‐ability after mechanochemical milling. Compared with the untreated Si‐XLPE, the tensile strength and elongation at break of Si‐XLPE samples after 10 cycles milling increased by 118.4% and 330.4%, respectively. J. VINYL ADDIT. TECHNOL., 25:149–158, 2019. © 2018 Society of Plastics Engineers  相似文献   

4.
New polyimides containing 4,4′‐bipyridinium units were synthesized by the reaction of bis(dichloromaleimide)arylene derivatives with 4,4′‐bipyridine in meta‐cresol. IR and 1H‐NMR spectroscopy and elemental analysis as well confirmed their structures. The polymers were characterized by viscometric measurements, softening points, and thermogravimetric data. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2091–2100, 2004  相似文献   

5.
Ethylene‐propylene‐diene‐terpolymer (EPDM) and polypropylene (PP)‐based uncross‐linked and dynamically cross‐linked blends were prepared both in an internal mixer and in a corotating twin‐screw extruder. The effects of composition, plasticization and mixing equipment on the morphology development and the final viscoelastic properties were studied. In the uncross‐linked blends, the plasticization resulted in a coarser morphology. Furthermore, it was shown that the majority of the plasticizer resided in the EPDM phase, enabling its deformation in the flow direction. In addition, the intensive mixing conditions inside the twin‐screw extruder resulted in a finer morphology. In the dynamically cross‐linked blends, the twin‐screw extrusion process resulted in a higher level of gel content with larger EPDM domains. The plasticization showed again a coarsening effect, resulting in interconnected cross‐linked EPDM domains. An interesting interfacial phenomenon was observed especially in the plasticized vulcanized blends where nanometer size occluded PP domains were stripped off and eroded into the EPDM phase. With the exception of the nonplasticized uncross‐linked blends, the viscoelastic properties of all other blending systems were found to be directly affected by the morphology, gel content (in the case of cross‐linked blends), and the presence of the plasticizer. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
Bis(2‐(oxiran‐2‐ylmethyl)‐1,3‐dioxoisoindolin‐5‐yl) carbonate and polymers containing 9‐anthracenylmethylmethacrylate (AMMA), ptert‐butoxy styrene (PTBS), and methacrylic acid (MAA) monomeric units were synthesized with the aim of developing a novel photo‐patternable cross‐linked epoxy system. The oxirane groups in bis(2‐(oxiran‐2‐ylmethyl)‐1,3‐dioxoisoindolin‐5‐yl) carbonate were reacted with the carboxylic acid in the polymer to generate a cross‐linked epoxy film, and the photo degradation of the cross‐linked film was achieved through decomposition of the carbonate groups in the cross‐linked film by deep UV irradiation. Because the copolymer containing anthracene groups has relatively high reflective index and absorption at 248 nm, this cross‐linked system can be applied to patternable bottom antireflective coating materials for deep UV lithography applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The polymer‐molding‐releasing properties of metal molds were found to be related to the following factors: (1) interfacial chemical bonding between the surfaces of polymers and metal molds and (2) a friction force or friction coefficient between polar substances and/or low‐molecular‐weight components in the polymers and physical factors on mold surfaces. We theoretically and experimentally confirmed that metal molds with good polymer‐molding‐releasing properties had very small surface free energies. We also proved that the surface free energies in the resulting polymer moldings were lower than before shaping. The molding releasing properties improved with decreasing friction force and friction coefficient between the surface of polymers and metal molds and with decreasing surface free energy. To obtain metal molds with lower surface free energies, we developed a polymer plating method with perfluorinated‐group‐containing triazine dithiol. The Metal mold treated by polymer plating had lower critical surface tension (7.5 mJ/m2) than Teflon (18 mJ/m2), indicating that the surface consisted of CF3 ? groups. The treated mold showed excellent durability in its releasing properties, which was better than that of the untreated mold. This technique was developed for the production of molds for the Fθ lens and the naturally bright focusing screen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2549–2556, 2003  相似文献   

8.
AV‐17(Cr) material was prepared by modifying a commercial polymer AV‐17 (initially bearing R4N+ functional groups) with Cr(III) compounds was investigated. Comparative isotherms characterizing the and ion sorption from solution with pH values of 3 and 8, respectively, at 19°C and 60°C, were obtained using the raw AV‐17(Cl) and the modified AV‐17(Cr) material. The sorption process on AV‐17(Cr) takes place through the coordination of Cr(VI) ions with Cr(III) ions, while on AV‐17(Cl) it is due to an ion exchange mechanism. The sorption isotherms obtained in pH 8 solutions fit perfectly the Langmuir model. The thermodynamic functions ΔG, ΔH, and ΔS characteristic to the adsorption of ions from K2CrO4 solutions with pH = 8 were calculated. The active sites belonging to the AV‐17(Cr) material were identified as jarosite type compounds of Cr(III). SEM images show that the Cr(III) compounds are present in the form of ultrafine particles located on the surface and within the bulk phase of the polymer granules. Comparative thermal degradation process of both the AV‐17(Cr) and the AV‐17(Cl) material was conducted in air and in an inert atmosphere (He). The thermal degradation mechanism of sorbent AV‐17(Cr) and exchanger AV‐17(Cl) is proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41306.  相似文献   

9.
Miaojun Xu  Xu Li  Bin Li 《火与材料》2016,40(6):848-860
A novel cross‐linked organophosphorus–nitrogen polymetric flame retardant additive poly(urea tetramethylene phosphonium sulfate) defined as PUTMPS was synthesized by the condensation polymerization between urea and tetrahydroxymethyl phosphonium sulfate. Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 13C and 31P solid‐state nuclear magnetic resonance. The synthesized PUTMPS and curing agent m‐phenylenediamine were blended into epoxy resins to prepare flame retardant epoxy resin thermosets. The effects of PUTMPS on fire retardancy and thermal degradation behavior of EP/PUTMPS thermosets were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter measurement, and thermalgravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS), respectively. Water resistant properties of epoxy resin thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the EP/12 wt% PUTMPS thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value reached 31.3%. The TGA results indicated that the incorporation of PUTMPS promoted epoxy resin matrix decomposed and char forming ahead of time, which led to a higher char yield and thermal stability for epoxy resin thermosets at high temperature. The morphological structures and analysis of XPS for the char residues of the epoxy resin thermosets shown that PUTMPS benefited to the formation of a sufficient, more compact, and homogeneous char layer with rich flame retardant elements on the materials surface during burning, which prevented the heat transmission and diffusion, limited the production of combustible gases, inhibited the emission of smoke, and then led to the reduction of the heat release rate and smoke produce rate. After water resistance tests, EP/12 wt% PUTMPS thermosets still remained excellent flame retardancy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In the present study, an attempt has been made to convert sericin into film form and further make it insoluble by forming sericin–aluminum metal complex using alum salt, which may lead to some extent of cross‐linking. After complex formation sericin becomes insoluble in warm water as well as thermal stability and tensile strength improves significantly with increasing alum content. Metal complexed sericin films show good antimicrobial property and both the pure and alum modified sericin (AM‐Sericin) films show a very good oil barrier property. But after complex formation moisture content and swelling percentage of sericin film decreases quite significantly with increasing aluminum concentration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41400.  相似文献   

11.
A novel and effective one‐step method has been demonstrated to fabricate cross‐linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross‐linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in‐situ cross‐linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross‐link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3‐hour reaction not only shows a 40% enhancement in membrane Young's Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2‐h at 60°C. This study may open up a totally new approach to design next‐generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016  相似文献   

12.
A novel chitosan‐based adsorbent (CCTE) was synthesized by the reaction between epichlorohydrin O‐cross‐linked chitosan and EDTA dianhydride under microwave irradiation (MW). The chemical structure of this new polymer was characterized by infrared spectra analysis, thermogravimetric analysis, and X‐ray diffraction analysis. The results were in agreement with the expectations. The static adsorption properties of the polymer for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ were investigated. Experimental results demonstrated that the CCTE had higher adsorption capacity for the same metal ion than the parent chitosan and cross‐linked chitosan. In particular, the adsorption capacities for Pb2+ and Cd2+ were 1.28 mmol/g and 1.29 mmol/g, respectively, in contrast to only 0.372 mmol/g for Pb2+ and 0.503 mmol/g for Cd2+ on chitosan. Kinetic experiments indicated that the adsorption of CCTE for the above metal ions achieved the equilibrium within 4 h. The desorption efficiencies of the metal ions on CCTE were over 93%. Therefore, CCTE is an effective adsorbent for the removal and recovery of heavy metal ions from industrial waste solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
14.
Polystyrene (PSt) or poly(vinylbenzyl chloride) (PVBC) crosslinked with divinylbenzyl (DVB) materials were synthesized through free radical polymerization into templates formed by the surfactant polyoxyethylene (4) lauryl ether (Brij‐30). The chemical composition of the final products was verified through attenuated total reflectance infrared spectroscopy (ATR‐IR) and the thermal behavior was investigated through thermogravimetric analysis (TGA). Depending on the organization of Brij‐30 in aqueous solution, three characteristic structures, namely spherical nanoparticles, platelet‐like objects and three‐dimensional networks, were identified through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The spherical nanoparticles and the platelet‐like objects form rather stable dispersions, especially in aqueous surfactant solutions, as exemplified by the evolution of the turbidity of the PSt‐based materials, using sodium dodecyl sulfate as surfactant. All materials retain their integrity even after thermal treatment at high temperature (~200–250°C). The benzyl chloride group of the PVBC‐based materials offers a significant potential for further elaboration and practical applications, since they can be further functionalized while retaining their integrity. This potential is demonstrated here through hydrolysis to obtain hydroxyl‐functionalized three‐dimensional networks. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43297.  相似文献   

15.
Smart polyelectrolyte hydrogels are increasingly studied toward the realization of soft microactuators. This study focuses on the fabrication of highly aligned and covalently cross‐linked polyacrylamide hydrogel microfibers by electrospinning technique following two‐stage polymerization. The engineering of the reaction timescale of the precursor, such that the material gels shortly after spinning, is described and the design of the electrospinning setup, to generate highly aligned fibers, is presented. In addition the effect of the operating parameters on the fibers average diameter is investigated. The generated fibers are 15 cm long with average diameter ranging between 100 nm and 1.10 μm. The fibers diameter is controlled by adjusting the thickener type and concentration in the precursor and the electrospinning processing parameters. Thinner fibers are generated at lower thickener molecular weights and concentrations as well at lower flow rate and higher voltage. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41092.  相似文献   

16.
A number of functionalized triglycerides were synthesized from glyceryl trioleoate via epoxidation followed by reduction to give glyceryl tris(9‐hydroxy)trioleoate (a triol) or hydrolytic ring opening to obtain glyceryl tris(9,10‐dihydroxy)trioleoate (a hexaol). A selective monoepoxidation reaction of glyceryl trioleoate was also carried out and the resulting monoepoxide was hydrolyzed to give glyceryl 9,10‐dihydroxytrioleoate (a diol). Glyceryl tris(9‐hydroxy)trioleoate was brominated followed by displacement with sodium azide and reduction to give glyceryl tris(9‐amino)trioleoate (a triamine) and glyceryl tris[9‐(N‐isopropylamino)]trioleoate. These functionalized triglycerides were crosslinked with 1,4‐phenylene diisocyanate. The crosslinked polymers exhibit thermoset characteristics. Thermal analysis results suggest that the polymers are in amorphous states, and their thermal stability was significantly affected by crosslink degree. The crosslinked polymer derived from the diol retained 56% of its weight at 408°C, whereas the polymers derived from the aforementioned hexaol with higher crosslink degree retained only 36% of the original weight. Glass transition temperatures of these polymers range from ?1.0°C to 10.2°C. The thermal stable polymer, 12 , derived from the aforementioned diol exhibits a linear viscoelastic character and can be used as thermoplastics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Modeling of the manufacturing process of high‐voltage power cables was performed with the aim of predicting residual stresses in the cable insulation. A viscoelastic power law‐type constitutive model was used which incorporates temperature and crystallinity dependence of the parameters. In this way the mechanical problem is coupled to the heat transfer and crystallization problems. In order to illustrate the effects of relaxation, a comparison to a thermoelastic material model is made. POLYM. ENG. SCI., 45:1132–1139, 2005. © 2005 Society of Plastics Engineers  相似文献   

18.
A new strategy was developed to prepare thermo‐ and pH‐sensitive hydrogels by the crosslinking of poly(N‐isopropylacrylamide) with a biodegradable crosslinker derived from poly(L ‐glutamic acid). Hydrogels were fabricated by exposing aqueous solutions of precursor containing photoinitiator to UV light irradiation. The swelling behaviors of hydrogels at different temperatures, pHs, and ionic strengths were examined. The hydrogels shrank under acidic condition or at temperature above their collapse temperature and would swell in neutral or basic media or at lower temperature. These processes were reversible as the pH or temperature changed. All hydrogels exhibited no weight loss in the simulated gastric fluid but degraded rapidly in the simulated intestinal condition. Bovine serum albumin were used as a model protein drug and loaded into the hydrogels. The in vitro drug release experiment was carried out at different pH values and temperatures. The pH and temperature dependent release behaviors indicated the promising application of these materials as stimuli‐responsive drug delivery vehicles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A novel long‐chain divinyl ether of tris(diethyleneglycol)‐bisacetal, has been synthesized by electrophilic addition of one molecule of diethylene glycol to two molecules of divinyl ether of diethylene glycol (DVDEG) in the presence of CF3COOH in quantitative yield. The monomer was cationically polymerized (BF3·OEt2, or complex LiBF4·MeO(CH2)2OMe) and copolymerized with DVDEG to deliver solid polymers the yields being 80–100%. The polymers represent the cross‐linked polyether‐polyacetal structures comprising macrocycles. The polymers were treated with 3% solution of KOH or CsOH in methanol to afford solid superbase complexes of KOH (CsOH) with cross‐linked polyether‐polyacetal macrocyclic networks. Preliminary tests have shown the complexes to be active catalysts for ethynylation of acetones and prototropic isomerization of methyl propargyl ethers to allenyl methyl ethers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A novel method to prepare semi‐interpenetrating polymer network rigid cross‐linked poly(vinyl chloride) (c‐PVC) foams with improved shear toughness in the absence of anhydride components is reported. The cross‐linked network structure in the c‐PVC foams was composed of polyurea network modified by epoxy structure. The cellular morphology was characterized by scanning electron microscopy. Tensile, compressive, and shear properties of the foams were studied. The obtained c‐PVC foams showed high shear properties compared with the comparative samples with the same density and cellular morphology. Possible reactions during the preparation of c‐PVC foams were studied by means of Fourier transform infrared spectrometry and nuclear magnetic resonance measurements through the model experiments. The results showed that allophanate structure resulting from the reaction between isocyanate compounds and epoxy compounds formed in the molding step, which was included into the final cross‐linked network in the cross‐linking step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40567.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号