首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
激光增材制造是一种兼顾精确成形和高性能需求的一体化制造技术,为钢构件的高质量快速制造提供了新思路、新方法。从目前典型钢构件的激光增材制造成形质量控制、组织特征、力学性能和应用现状4个方面出发,主要综述了不同的能量输入及氧含量对成形致密度的影响,提出了如何降低孔隙率的方法,对比了不同激光增材制造工艺方法下,制备模具钢、不锈钢和超高强钢试件热处理前后的微观组织和力学性能。在此基础上,对钢构件激光增材制造的发展趋势和需要进一步深入研究的问题进行了讨论,指出了激光增材制造修复技术与超声辅助工艺相结合的发展前景。  相似文献   

2.
增材制造技术可实现复杂钛合金零件的快速成形,制造的Ti-6Al-4V合金具有较高的强度以及优异的高温性能,被广泛应用于航空、医疗等各大领域。综述了金属增材制造的典型工艺,分析了Ti-6Al-4V合金的相变特征,总结了选区激光熔化制造Ti-6Al-4V的力学性能和组织调控方法,着重分析了热处理温度、冷却速率、变质处理以及超声冲击等对合金组织的影响;展望了增材制造Ti-6Al-4V合金的主要发展方向。  相似文献   

3.
增材制造技术是一种无须模具、近净成形的先进制造工艺。不锈钢是一种在核电行业广泛应用的结构材料。实现不锈钢结构件的增材制造将进一步推动增材制造技术的发展,也可为核行业带来革命性改变。以核电用316L不锈钢为例,系统阐述了不锈钢粉末增材制造研究现状,包括粉末制备工艺现状、增材制造成形工艺现状以及成形件的组织性能研究现状。目前,增材制造用316L不锈钢粉末的制备工艺主要为雾化法,粉末的物化性能受制粉工艺参数的影响。在激光粉末床熔融增材制造技术、电子束选区熔化技术和等离子增材制造技术中,尤以激光粉末床熔融增材制造不锈钢的应用最为广泛。增材制造316L不锈钢的组织与性能存在各向异性,但各向异性可通过增材制造的后处理技术消除。目前增材制造最为常用的后处理技术为热处理。与锻造316L不锈钢相比,经热等静压处理的增材制造316L不锈钢的力学性能与辐照性能更优。目前,核用不锈钢的增材制造技术还处于起始阶段,后续应重点关注增材制造的成形机理及成形材料中子辐照性能等内容。  相似文献   

4.
增材制造作为实现三维结构快速成形的技术,广泛用于航空航天、汽车交通等领域.当前,激光熔丝增材制造多依托于传统的激光焊接设备,采用旁轴送丝方式,在增材过程中,需调整激光头方向保证送丝和焊接头行进的相对方位,增大了复杂构件增材制造系统控制难度,损失了加工自由度.随着激光加工设备和技术的发展,近年来出现了一种可以解决上述问题...  相似文献   

5.
金属增材制造技术可用于大型、复杂高性能钛合金结构件的制备,在航空航天等领域具有显著的优势和巨大的发展潜力。虽然增材制造Ti-6Al-4V合金构件的强度已经能够超过锻件,但它仍存在内部孔隙、熔合不良、粗大的柱状晶及残余拉应力等问题,使其在疲劳性能上与锻件具有一定的差距。本文在介绍直接能量沉积、选区激光熔化和电子束选区熔化3种代表性增材制造技术的原理及特点的基础上,简述了3种工艺制备Ti-6Al-4V合金构件的微观组织、静态力学性能及低周疲劳性能的研究进展,重点讨论了打印方向、缺陷、显微组织和表面处理对低周疲劳性能的影响。分析了增材制造Ti-6Al-4V合金构件低周疲劳性能、拉伸性能与微观组织之间的内在关系,并对提高构件低周疲劳性能的方法和推动其广泛应用的发展方向进行展望。  相似文献   

6.
7.
颗粒增强体的加入不仅使钛基复合材料(TMCs)具有复杂相组成,还改变了材料在制备与加工过程中的特性.针对颗粒增强TMCs,对其组织结构和制备方法进行简要介绍,总结了组织与性能的影响因素,包含增强体对疲劳性能的影响,疲劳断面表征分析,加工工艺、制备工艺尤其是新兴的激光增材制造对颗粒增强TMCs组织性能的影响.颗粒增强体的强化机制有应力承载作用、固溶强化、细晶强化、弥散强化等.颗粒增强TMCs的疲劳强度高于普通钛合金,断裂机制通常为解理断裂,高温下转变为准解理断裂.制备工艺与加工工艺对颗粒增强TMCs的组织性能影响显著,合理设置激光增材制造工艺参数能够制备力学性能优异、耐磨与抗腐蚀性能良好的颗粒增强TMCs.  相似文献   

8.
激光增材制造技术成形的制件具有自由度大、精度高、质量和性能好等优势,随着该技术的日益发展,其在不锈钢材料领域取得了显著的进展。激光增材制造技术成形不锈钢通常呈现出与传统制备工艺显著不同的非平衡凝固组织,表现出复杂的结构特征,而这些特征决定了合金的性能和应用。介绍了激光熔化沉积和选区激光熔化两种激光增材制造技术,选择典型的316L不锈钢及17-4PH不锈钢,综述了激光增材制造不锈钢凝固组织特征的研究现状,重点关注典型多尺度、层次性的组织结构(包括晶粒、宏观缺陷、熔池组织、胞状亚结构、氧化物夹杂等)。系统分析了激光增材制造不锈钢的组织调控方法,包括调整工艺参数、改变工艺环境及热处理等方式,通过组织调控能够影响晶粒的生长及熔池反应,进一步改善其内部微观组织,如形成间隙固溶体或颗粒夹杂物、细化晶粒及消除孔隙等,同时能促进不同相的析出和转变。通过合理地调控凝固组织,能够显著改善不锈钢的组织及机械性能。最后,对激光增材制造不锈钢的未来发展进行了展望。  相似文献   

9.
铜/钢双金属材料具有力学强度高、物理化学性能优良等优势,在交通运输、电力能源和建筑工业等领域应用前景广阔。然而,传统熔铸工艺在制造铜/钢双金属材料时,容易在铜/钢界面处产生偏析现象,在一定程度上限制了铜/钢双金属材料的发展。与传统工艺相比,增材制造技术不仅能实现复杂加工零件的快速制造,而且在成形过程中较短的保温时间能缓和或消除异种金属材料界面产生的冶金缺陷,进而增强铜/钢双金属材料的力学性能。由于双金属材料是近年来的研究热点,有关增材制造铜/钢双金属材料的综述性文章较少,故综述了近年来激光、电子束及电弧增材制造技术制造铜/钢双金属材料的研究发展现状,分析了各技术的优缺点,并从制备方法、工艺参数及界面合金元素等角度,分析了影响材料界面组织性能变化的关键因素。发现在增材制造铜/钢双金属材料方面,目前激光增材制造技术主要应用于精度要求较高的小尺寸零部件,电子束增材制造技术适用于某些具有特殊性能的合金,如钛合金,而电弧增材制造技术适用于精度要求较低的大型复杂零部件。在铜/钢双金属材料增材制造过程中,界面处易形成显微组织分布不均匀、界面晶粒尺寸差异较大等现象,导致界面处产生应力集中,从而造成材料...  相似文献   

10.
Owing to the physical properties of copper and its alloys it is challenging to achieve good surface quality and low porosity by the widely used laser-based additive manufacturing processes. This paper deals with the role of alloy composition, powder size and process parameters in additive manufacturing with laser beam melting machine (with power up to 100 W). Test parts were produced in pure copper and CuNiSi(Cr) alloys. The porosity was investigated as a function of different process parameters and powder size ranges. The effects of the alloy physical properties (reflectivity, thermal conductivity, melting range and surface tension) are discussed. Moreover, the effect of thermal treatment on the properties of CuNiSi parts was assessed in conventional two-step heat treatments.  相似文献   

11.
钴基高温合金是一种在高温下具有高强度、良好的耐热、耐磨和耐腐蚀性能的材料,被广泛用于航空航天等领域。钴基高温合金增材制造技术具有材料利用率高、制造周期短和能够制造较为复杂零件等优点,相对于传统制造技术有巨大的优势,受到了社会的广泛关注。对钴基高温合金的合金化原理进行了阐述,总结了国内外钴基高温合金增材制造所使用的不同工艺方法,重点对钴基激光增材制造技术、钴基电子束激光增材制造技术进行了分析,综述了各种方法的研究现状和最新成果。评价了钴基高温合金增材制造技术在材料利用率、内部缺陷、成形精度、相关标准化方面的不足,并对钴基高温合金增材制造技术发展方向提出了预测。  相似文献   

12.
金属3D打印技术依照三维模型进行复杂几何形状构件的制造,可以制造传统制造手段无法实现的复杂结构,已经成为复杂高温合金构件成形的重要技术手段。然而,当采用3D打印工艺制备镍基高温合金构件时,存在原料/能量源/熔池之间的相互作用,并在大温度梯度、极快冷等条件下会进行非平衡凝固,这些特殊的过程决定了3D打印镍基高温合金有着不均匀的微观组织与各向异性的力学性能。现阶段,对增材镍基高温合金微观结构-性能-使役行为的理解比较欠缺,严重限制了其在工业领域的广泛应用。本文讨论了3D打印镍基高温合金的特点;归纳了不同制粉方式、粒径比、粉末成分、缺陷、流动性等粉末原材料特性对3D打印镍基高温合金冶金质量的影响;梳理了3D打印激光能量、扫描速度、扫描间距等工艺参数对镍基高温合金晶粒、析出相及偏析等微观组织的影响;讨论了影响3D打印镍基高温合金拉伸、蠕变及疲劳性能的因素。最后,总结了3D打印镍基高温合金发展过程中面临的问题及可能的对策,提出了一些值得探索的方向。  相似文献   

13.
Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.  相似文献   

14.
Direct metal laser sintering (DMLS) has evolved as a popular technique in additive manufacturing, which produces metallic parts layer-by-layer by the application of laser power. DMLS is a rapid manufacturing process, and the properties of the build material depend on the sintering mechanism as well as the microstructure of the build material. Thus, the prediction of part microstructures during the process may be a key factor for process optimization. In addition, the process parameters play a crucial role in the microstructure evolution, and need to be controlled effectively. In this study, the microstructure evolution of Al-Si-10Mg alloy in DMLS process is studied with the help of the phase field modeling. A MATLAB code is used to solve the phase field equations, where the simulation parameters include temperature gradient, laser power and scan speed. From the simulation result, it is found that the temperature gradient plays a significant role in the evolution of microstructure with different process parameters. In a single-seed simulation, the growth of the dendritic structure increases with the increase in the temperature gradient. When considering multiple seeds, the increasing in temperature gradients leads to the formation of finer dendrites; however, with increasing time, the dendrites join and grain growth are seen to be controlled at the interface. The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-018-0213-1  相似文献   

15.
NiTi is categorized as a shape memory alloy that found interesting applications in vast areas of engineering from aerospace to biomedical; the latter applications are due to its biocompatibility in addition to its unique properties. The unique properties such as shape memory and pseudoelasticity make NiTi an excellent candidate in many functional designs. However, the manufacturing and processing complications of this alloy pose impediments to widespread applications. This paper discusses challenges and opportunities in making NiTi parts for biomedical applications such as implants. To this end, common manufacturing processes for NiTi from casting and powder metallurgy to machining are discussed. Also, new opportunities in additive manufacturing processes such as laser and electron beam techniques towards making 3D components from NiTi are described. Finally, the challenges in heat treatment and shape-setting of NiTi parts in order to attain desired shape memory properties are reviewed.  相似文献   

16.
激光选区烧结(SLS)是一种增材制造技术,它利用激光逐层烧结粉末并叠加的原理来成形复杂制件,具有材料广泛,无需支撑以及成形精度高等优点。然而,其成形过程中无外力驱动的特点,造成制件中不可避免地存在一定孔隙,使制件性能通常低于传统模塑件。因此,国内外学者提出利用各种纳米填料来增强SLS制件的性能,并取得了良好的效果,已成为本领域研究热点。文中重点介绍了各种用于SLS技术的高分子纳米复合材料,对其研究现状进行综述,并提出今后该领域的发展方向。  相似文献   

17.
选区激光熔化成形作为一种新兴的增材制造工艺,可以实现轻质镁合金复杂构件的一体化精密成形。由于镁合金的化学性质活泼,镁合金的选区激光熔化成形相较于其他合金系更具挑战性,沉积构件的强度、塑性、韧性等力学性能指标整体偏低,抗腐蚀性能整体偏差,所以还需进一步提升其综合性能并拓展镁合金的应用领域。综述了近年来国内外关于镁合金选区激光熔化成形方面的研究,为镁合金的精密一体化成形提供相应的理论基础和指导策略。首先阐述了该新兴工艺的原理及特点,基于镁合金熔沸点低、饱和蒸气压高等特点,综合探讨了微裂纹、孔隙和杂质等缺陷的形核原理,提出了相应的缺陷控制策略。对沉积试样的微观组织进行了分析,并与传统工艺进行了比较,并基于此讨论了合金成分微调控和镁基复合材料这2种实现成分微调控的主要方案。最后结合热处理、热等静压等后处理方式调控微观组织,并对采用摩擦搅拌、激光冲击强化等强化工艺结合选区激光熔化的复合增材制造工艺在线闭合缺陷、调控微观组织等技术进行展望,希望可以进一步提升镁合金的综合性能,促进镁合金更广泛的工程应用。  相似文献   

18.
航空航天领域通常将钛合金作为承力结构件使用,对其性能和可靠性都有很高的要求,大型结构件的整体化制造是实现这些需求的有效途径。电弧增材制造技术因效率高、成本低、致密度高,在制备大型结构件方面具有一定优势。综述了国内外电弧增材制造钛合金组织的研究现状,介绍了改变形核条件以及引入轧制、超声等外场辅助技术调控后所得的电弧增材制造钛合金组织。对电弧增材制造钛合金的拉伸性能和疲劳性能进行了综述,总结了拉伸性能和疲劳性能的特点及断裂的原因。最后,对航空航天用钛合金电弧增材制造的组织及力学性能的关系进行了分析,并且对两者的调控前景进行了展望。  相似文献   

19.
数值模拟可以高效、有针对性地对金属激光选区熔化成型过程中的温度场、熔池形状、残余应力和变形、凝固过程微观组织演变等过程建立相应的模型并对成形件的相关性能做出准确预测,为工艺优化提供科学的依据,显著降低工艺开发成本和缩短工艺开发周期,有力推动金属增材制造向工业级应用的转变。本文综述了金属激光增材制造过程中温度场、熔池动力学、成形件内部残余应力和变形、显微组织变化4个方面数值模拟的最新研究进展,概述了金属SLM过程数值模拟所取得的最新进展,分析了金属SLM数值模拟领域的研究热点和所存在的计算时间长、成本高等问题,最后提出金属SLM过程数值模拟应将3D打印过程中快速凝固、微熔池等特征与大数据、人工智能、深度学习等技术相结合,进一步提高数值模拟精度,拓宽金属激光增材制造加工窗口,为个性化产品开发提供指导。  相似文献   

20.
耿汝伟  杜军  魏正英  魏培 《材料导报》2018,32(7):1145-1150, 1180
金属增材制造技术是近30年发展起来的一项具有战略意义的先进制造技术。目前对增材制造的研究主要集中在制造装备与控制系统研发、产品性能测试等方面,对构件内微观组织的形成以及宏微观结构性能的关系研究较少。本文简要介绍了金属增材制造发展现状以及在微观组织演化方面研究的不足,揭示了微观组织演化研究的重要性和迫切性。针对相场法的基本原理和优势,着重分析相场法应用于金属增材制造中的模型选取、非材料物性参数的确定等问题及解决方法,从相场数值模拟的角度来探讨工艺参数对微观组织的影响。文章最后指出利用相场法模拟金属增材制造过程中微观组织演化符合未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号