首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《粉末冶金学》2013,56(4):326-335
Abstract

A boron alloyed AISI 316L, sintered in pure hydrogen at 1250°C, was investigated to study the effect of the microstructure, with particular reference to the near full dense and boride free surface layers, on corrosion resistance and impact properties. The near full dense and homogeneous austenitic surface layer results from the flow of the liquid towards the bulk of the specimens during sintering. It significantly improves the corrosion resistance, while impact properties are strongly influenced by the bulk microstructure, where the boride network creates favourable conditions for both nucleation and propagation of crack.  相似文献   

2.
《粉末冶金学》2013,56(1):43-48
Abstract

Powder metallurgy (PM) part makers heavily rely on part density as a mean of controlling part performance. Higher compaction pressures may be used to obtain higher densities and better properties. However,ejection stresses usually increases with compacting pressure. Those stresses may affect significantly part quality (surface finish, formation of cracks and lamination) and tool wear.

Different methods may be used to minimise ejection stresses, such as the use of admixed lubricant, die wall lubrication and the modification of tool surfaces. This paper presents an approach to evaluate the effect of tool coatings on the ejection of ferrous compacts. The method consists of evaluating the ejection characteristics of core rods with different coatings. The results obtained show that ejection characteristics are sensitive to tool coatings. Coating the surface of the core rods yields important variations of the stripping pressure (2×) and ejection energy (1·6×). No clear correlations between the ejection characteristics and the part surface finish were observed.  相似文献   

3.
Craus M.-L.   《粉末冶金学》2013,56(4):367-373
Abstract

Stainless steel 316L MIM components can be made from either prealloyed powders or from master alloys blended with carbonyl iron powder. In this study these two techniques were compared using prealloyed and master alloyed gas atomised powders of ? 16 μm and ? 22 μm sizes. Four different compounds were prepared, characterised and injection moulded into tensile bars. The bars were compared for green strength, green defects, sintered strength and microstructure. The green components are stronger when carbonyl iron powder is used with the gas atomised master alloy. This material also seems to be less susceptible to moulding defects. The sintering strength of the material produced using the pre-alloyed powder was higher than the master alloyed prepared material. Little difference in mechanical properties existed between the materials fabricated from gas atomised prealloyed ? 16 μm and the ? 22 μm powders. Also, the viscosity of the mixtures was higher for the ? 16 μm material and the master alloy mixtures than for the –22 μm gas atomised prealloyed powders.  相似文献   

4.
《粉末冶金学》2013,56(2):120-126
Abstract

This paper describes the microstructural and mechanical properties of injection moulded 17-4 PH stainless steel gas and water atomised powder. Gas and water atomised stainless steel powders were injection moulded with wax based binder. The critical powder loading for injection moulding were 62·5 and 55 vol.-% for gas and water atomised powders respectively. Binder debinding was performed using solvent and thermal method. After dedinding the samples were sintered at different temperatures for 1 h in pure H2. Metallographic studies were conducted to determine to extend densification and the corresponding microstructural changes. The results show that gas atomised powder could be sintered to a maximum (98·7%) of theoretical density, and water atomised powder could be sintered to a maximum (97·08%) of theoretical density. Maximum tensile strength was obtained for gas atomised powder sintered at 1350°C. The tensile strength of the water atomised powder sintered at the same temperature was lower owing to higher porosity. Finally, mechanical tests show that the water atomised powder has lower mechanical properties than gas atomised powder.  相似文献   

5.
6.
《钢铁冶炼》2013,40(3):228-237
Abstract

Magnesia–chromite bricks are used as refractories for the refining of stainless steel in vacuum–oxygen decarburisation (VOD) ladles. Refractory wear is not uniform. In the present work, worn bricks from different zones in the ladle have been analysed, and a set of interdependent degradation mechanisms is proposed. Refractory wear as a function of position in the ladle is discussed. Slag infiltration and MgO dissolution from the refractory were observed in all samples, whereas FeOx decomposition was seen at two levels in the high wear samples. First, partial decomposition of primary chromite crystals ( (Mg) [Fe3+, Cr, Al]2 O4 ) occurred at the hot face of the brick. Three layers were distinguished in the reacted chromite crystals and a reaction mechanism is presented. Second, a decrease in the FeOx content of the magnesia phase occurred at the hot face of the brick. The negative effect of the presence of FeOx in magnesia–chromite refractories is discussed and the influence of the ferrostatic pressure is demonstrated. Finally, the consequences of the following phenomena are discussed: increase in brick porosity, slag infiltration, corrosion, erosion of the partially liquid bonded refractory system, and spalling and cracking.  相似文献   

7.
《粉末冶金学》2013,56(3):271-275
Abstract

Fine and ultrafine powders are often used as starting materials for fabrication of advanced materials; they are first formed into desired shapes and then consolidated into high density parts by application of pressure and heat. Electroconsolidation is a densification method for rapid pressure assisted densification of complex shaped parts made from powder preforms. The part to be densified is immersed in a bed of free flowing, electrically conducting, graphite powder medium within a cylindrical die chamber. Pressure is applied externally and heat is generated internally by resistively heating the graphite powder. Because of rapid heating and the attendant wide temperature fluctuations possible with resistive heating, it is of paramount importance to measure and control the temperature in the die to achieve reproducible densification properties. This paper describes an ultrasonic pitch-catch sensor that can be used to non-intrusively measure the temperature of a graphite powder bed. Results of ultrasonic data for heating trials conducted at up to ≈3000°C indicate that the average temperature in a graphite powder bed can be predicted to within 2-3%. The ultrasonic sensor can be used to precisely control the heating trajectory and densification of parts with reproducible properties.  相似文献   

8.
none 《粉末冶金学》2013,56(1):28-33
Abstract

The addition of Cu3P for developing the high strength 465 maraging stainless steel from elemental powders was studied. The sintering parameters investigated were sintering temperature, sintering time and wt-%Cu3P. In vacuum sintering, effective sintering took place between 1300 and 1350°C. The maximum sintered density of 7·44 g cm?3 was achieved at 1350°C for 60 min with 4–6 wt-%Cu3P. More than 6 wt-%Cu3P content and temperature >1350°C caused slumping of the specimens. The sintered specimens were heat treated and a maximum ultimate tensile strength (UTS) of 767 MPa was achieved with 4 wt-%Cu3P content. The maximum hardness of 45·5 HRC was achieved in heat treated condition with 4 wt-%Cu3P content. Above 4 wt-%Cu3P content increase in density was observed whereas the response to heat treatment decreased. Fracture morphologies of the sintered specimens were also reported. A comparison of sintering behaviour and mechanical properties of elemental powders with prealloyed powders was also given in the present study.  相似文献   

9.
《粉末冶金学》2013,56(2):151-155
Abstract

As sintered parts are to be machined after sintering, the MnS powder is usually added to improve the machinability. Vibratory ball peening is used for deburring and improving the surface finish of sintered components in local PM industries. The effect of the MnS powder content and vibratory ball peening on the corrosion resistance of the sintered 316LSC alloys was investigated. Experimental results show that the addition of MnS powder slightly decreases the sintered density. The weight loss rate of the sintered specimens immersed in the 10%FeCl3 corrosion test solution increases slightly with increas- ing MnS content, but decreases with increasing sintering temperature. Vibratory ball peening effec- tively decreases the weight loss rate of the sintered stainless steels. The chromium atoms actively migrate across the phase boundary and diffuse into the MnS particles during sintering. This intensive chromium diffusion affects the corrosion performance of the sintered alloys with MnS added. The surface morphology of the as sintered and the ball peened specimens before and after the corrosion test were studied with a SEM.  相似文献   

10.
《粉末冶金学》2013,56(3):240-252
Abstract

A comparison has been made between compaction, sintering, microstructural and mechanical properties of the 6061 aluminium alloy prepared via premixed elemental (EL) and prealloyed (PA) powders (as received and degassed) with and without additions of sintering aids and various solid and/or liquid lubricants. Both EL and PA powders were cold pressed at different pressures, ranging from 250 to 770 MPa, and sintered under vacuum in the range 580–640°C for 30–120 min. and then under pure nitrogen atmosphere for comparison. Vacuum degassing of the PA powder provided better compressibility and thus higher green densities than those for the as received PA or the premixed EL powder compacts pressed at compaction pressures ≥340 MPa. Near full sintered densities of , ~98%TD were obtained for both EL and PA 6061 Al alloys. Degassed PA Al with 0·6 wt-% paraffin wax (PW) or with only 0·12 wt-%Pb addition as sintering aid and no lubricant, and premixed EL with only 0·12 wt-%Pb addition and no lubricant gave the best optimum properties. It became apparent that additions of some solid lubricants such as lithium stearate (LS) and acrawax to both the premixed EL and PA powders provided reasonable green densities, but had deleterious effect on sintered densities and microstructures, particularly under vacuum sintering. Heating data curves during the sintering cycle, revealed formation of both transient and persistent liquid phases for the EL and mainly supersolidus liquid phase sintering (SLPS) mechanism for the PA. Tensile properties of the degassed, vacuum or nitrogen sintered PA Al alloy in T6 condition were higher than those of the equivalent alloy prepared by EL mixing with the former giving a tensile strength of 330 MPa and 6–8% elongation to failure, which are similar to those of the commercial (wrought) 6061 Al alloys.  相似文献   

11.
采用分子水平混合和低速球磨的方法制备铜包裹石墨烯/316 L不锈钢复合粉体,通过放电等离子烧结制备石墨烯增强316 L奥氏体不锈钢复合材料,研究铜及石墨烯对复合材料密度、硬度和拉伸性能的影响,并对拉伸断口形貌进行了分析.结果表明:通过分子混合和球磨混合可制备铜包裹石墨烯与不锈钢均匀混合的复合粉体.烧结过程石墨烯结构保持完整.铜包裹石墨烯增强体可明显改善烧结不锈钢复合材料的密度、硬度、抗拉强度和屈服强度,使其分别提高3.6%、17.4%、35.8%和34.5%.  相似文献   

12.
通过研究烧结气氛和烧结温度对冷等静压态316L不锈钢组织和力学性能的影响,探究了烧结的致密化过程,并初步分析了挤压之后不锈钢的组织与性能。发现真空条件下获得的力学性能均比Ar气氛下烧结的好;在N2气氛烧结的不锈钢抗拉强度为803.5 MPa,屈服强度为407.2 MPa,但是断后延伸率仅为33.7%。在真空气氛下进行烧结,随温度的升高,孔隙率下降、孔隙尺寸减小并发生球化;通过对比烧结温度的影响,得出在1 380℃进行烧结获得的力学性能最好,抗拉强度为578.4 MPa,断后伸长率为52.0%,并且晶粒比较细小。经过挤压处理,不锈钢晶粒进一步细化,抗拉强度为675.6 MPa,屈服强度为305.4 MPa,断后伸长率为45.6%。  相似文献   

13.
摘要:金属增材制造技术成形奥氏体不锈钢易出现与传统制备方法完全不同的非平衡亚稳微观组织,表现出独特的性能,其中激光增材制造的316L不锈钢,兼具高屈服强度、良好的伸长率以及优异的耐腐蚀性能。系统综述了近年来国内外激光增材制造316L不锈钢的研究进展,针对其高冷却速率、微熔池冶金、强非平衡凝固和复杂热履历成形条件,阐述其微观组织结构的形成机制和调控方法,以及对力学性能和腐蚀行为的影响规律,重点分析了激光增材制造316L奥氏体不锈钢的强韧化机制,最后展望增材制造奥氏体不锈钢的未来研究方向。  相似文献   

14.
FSW and TIG were conducted on 316L stainless steel.Variation during microstructure and properties in joints obtained by different welding methods was studied.The results show that the effect of severe mechanical stirring and intense plastic deformation creat a fine recrystallized grain in the welding joint during FSW.As for TIG,the temperature of welding joint exceeds the melting point of welded material itself.The entire welding process belongs to the solidification of a small molten pool;and the microstructure of the joint takes on a typical casting structure.When the welding parameters were selected appropriately,the average ultimate tensile strength of FSW joints can reach 493 MPa,which is 83.6%of base metal;the average elongation is 52.1%of base metal.The average ultimate tensile strength of TIG joints is 475 MPa, which is 80.5%of base metal;the average elongation is 40.8%of base metal.The tensile test of FSW joints is superior to the TIG joints.The microhardness of FSW joint compared to base metal and TIG joint having a significant improvement,which arel95.5 HV,159.7 HV and 160.7 HV,respectively;grain refinement strengthening plays an important role in enhancing the microhardness.The electrochemical corrosion tests show that the joint of FSW 316L austenitic stainless steel has a good corrosion resistance.  相似文献   

15.
研究了分别添加20%(质量分数)铜粉、锡粉,铝粉对粉末冶金3161,不锈钢性能的影响。在烧结温度为1100℃、烧结气氛为分解氨的条件下,对烧结材料的硬度、密度和显微组织进行了检测和分析。结果表明:添加20%铝粉可显著提高不锈钢粉末的压制性,但铝粉会与不锈钢基体发生强烈的化学反应,生成Fe2Al,恶化材料的性能;添加20%锡粉可显著提高材料的硬度;添加20%铜粉对材料的硬度影响不大。添加大量低熔点金属粉末的液相烧结不能显著提高材料的密度。  相似文献   

16.
The current study examines the effect of heating mode, temperature, and varying yttria alumina garnet (YAG) addition (5 and 10 wt pct) on the densification and properties of austenitic (316L) stainless steel. The straight 316L stainless steel and 316L-YAG composites were heated in a radiatively heated (conventional) and 2.45 GHz microwave sintering furnace. The compacts were consolidated through solid state as well as supersolidus sintering at 1200 °C and 1400 °C, respectively. Both 316L and 316L-YAG compacts couple with microwaves and heat to the sintering temperature rapidly (∼45 °C/min). The overall processing time was reduced by about 90 pct through microwave sintering. As compared to conventional sintering, compacts sintered in microwaves exhibit higher densification and finer microstructure but no corresponding improvement in mechanical properties and wear resistance. This has been correlated to elongated, irregular pore structure in microwave-sintered compacts.  相似文献   

17.
18.
氮作为一种强奥氏体化元素,在不降低韧性的前提下可以提高材料强度和抗腐蚀性能。为了研究氮含量对316L型不锈钢焊接性能的影响,采用两种不同氮含量的316L型不锈钢进行不填丝穿孔等离子弧焊接。通过力学、抗晶间腐蚀等性能的对比,结合金相组织观察,可以看出奥氏体不锈钢中氮元素含量的增加能够提高焊接接头的抗拉强度,但却促进了热影响区晶粒的粗化,导致热影响区的低温冲击性能降低。  相似文献   

19.
以气雾化316L不锈钢球形粉末为原料,通过压制、烧结工艺制备多孔过滤材料。在烧结温度、保温时间等其他制备工艺参数一定的情况下,着重分析粉末粒径、压制压力对多孔材料孔隙度、最大孔径和透过性能的影响规律,建立其相互关系方程。结果表明:多孔材料孔隙度主要受压制压力的影响,随压制压力的增大而减小,孔隙度的1.9倍与压制压力的平方根呈指数关系。相比于压制压力,多孔材料的最大孔径主要受粉末粒径的影响,随粉末粒径的增大而增大,两者之间呈线性关系;多孔材料的相对透气系数受粉末粒径和孔隙度的共同影响。在孔隙度一定的情况下,相对透气系数与粉末粒径的平方呈线性关系。  相似文献   

20.
异步轧制对316L不锈钢组织与性能的影响   总被引:2,自引:0,他引:2  
研究了形变量分别为50%和80%的异步轧制(速比1.28)对316L不锈钢显微组织与性能的影响.结果表明:异步轧制后显微组织中出现大量机械孪晶;样品表面粗糙度显著降低,硬度明显提高.由于粗糙度降低和孪晶界的贡献,在腐蚀介质(c(H2SO4)=0.05 mol/L, c(NaCl)=0.5 mol/L的水溶液)中,样品表现出良好的耐腐蚀性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号