首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the work, supported catalysts of FeOx and MnOx co-supported on aluminum-modified CeO2 was synthesized for low-temperature NH3-selective catalytic reduction (NH3-SCR) of NO. Impressively, the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2. The activity tests demonstrate that Fe–Mn/Ce1Al2 catalyst shows over 90% NO conversion at 75–250 °C and exhibits better SO2 resistance compared to Fe–Mn/CeO2. Fe–Mn/Ce1Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping. Also, the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species, Mn4+ species, Ce3+ species and the enhanced reducibility of Fe–Mn/Ce1Al2, which is superior to the Fe–Mn/CeO2 catalyst. More importantly, we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates (monodentate nitrate) is generated during NH3-SCR reaction. This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.  相似文献   

2.
《粉末冶金学》2013,56(3):216-220
Abstract

In this study, nanocrystalline Ni0·64Zn0·36Fe2O4 powders were prepared using a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling were studied by X-ray diffraction technique, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometre. It is revealed from the results of the phase analysis that nanocrystalline Ni0·64Zn0·36Fe2O4 ferrite with average crystallite size of 6·18 nm and non-uniform lattice strain of 0·33% has been formed after 60 h of milling time. A progressive increase of saturation magnetisation and a dramatic decrease in coercivity were also observed with increasing milling time.  相似文献   

3.
《粉末冶金学》2013,56(5):628-635
Abstract

The processing and properties of chromium–molybdenum, powder metallurgy steels with admixed extra-fine nickel (XF Ni) were investigated. Prealloyed Fe–1·5Cr–0·2Mo powder was blended with different quantities of XF Ni, while a hybrid steel with lower Cr content was prepared by blending Fe–1·5Cr–0·2Mo and Fe–0·5Mo prealloyed powders, with additions of XF Ni and copper powders. These steels were compacted into different part shapes in order to evaluate the effect of part thickness on sinterhardening behaviour. These parts were also subjected to different cooling rates after sintering. This study showed that additions of XF Ni improve the compressibility, densification behaviour and mechanical properties of Cr–Mo steels. Furthermore, the properties of the hybrid steel were shown to be either equal to or greater than those of the reference material. Hardenability of all steels was sufficiently high such that part thickness was seen to have negligible impact. Higher cooling rates generally resulted in improved mechanical properties.  相似文献   

4.
In the present work, TiC–TiB–TiB2 diffusion-layer-coated B4C composite powders were synthesised via a powder immersion method using Ti and B4C powders as reactants. The phase compositions and microstructure of the treated powders were characterised by employing X-ray diffraction and scanning electron microscopy. No significant reaction between B4C and Ti could be detected at 800°C. After treatment at 900°C, the products generated were composed of TiC and TiB. After treatment at 1000°C, the products generated were primarily composed of TiC and TiB, with a small amount of TiB2. The composition and proportions of the produced phases varied with process temperatures and the composition of the initial powders used. Powder mixtures with a Ti/B4C molar ratio of 3.5:1 and treated at 1000°C for 14?h were more suitable for synthesis of TiC–TiB–TiB2-coated B4C composite powders.  相似文献   

5.
A transformation from ??-Fe2O3 with rhombohedral structure to Fe3O4 with spinel face-centered cubic (fcc) structure was realized by ball milling the mixture of SrCO3 and ??-Fe2O3 powders with molar ratio of 1:3 under ambient air in the current work, but it was not observed by ball milling the ??-Fe2O3 powders. The transformation is due to a mechanochemical reaction between SrCO3 and ??-Fe2O3 in the milling process, and the ??-Fe2O3 catalyzes the decomposition of SrCO3, while the decomposition promotes the transformation of ??-Fe2O3 to Fe3O4. X-ray diffraction, X-ray photoelectron spectrometry, and magnetic measurements indicate that the transformation finishes completely upon milling of 120?hours, and the mixture milled for 120?hours consists of Fe3O4 and a Sr element. However, Sr does not incorporate into the Fe3O4 but exists in grain boundary of the Fe3O4 in a form of a Sr-O bond. It is found that the product obtained by ball milling the mixture is different from that prepared by sintering the mixture at atmospheric pressure, which product is SrFeO2.97 with cubic structure. The mechanism of the transformation and origin of difference in products obtained in the ball milling and sintering processes are also discussed in the current work.  相似文献   

6.
Bulk La2O3–Ga2O3–ZrO2 (LGZ) glass and Tm3+/Yb3+ co-doped LGZ glasses were synthesized successfully using containerless technique. Raman spectra result reveals that the matrix sample possesses the low maximum phonon energy of ~642 cm?1. The glasses show good compatibility between large Abbe numbers (>31) and high refractive indices (nd > 1.93). Moreover, transmittance measurements reflect that the glasses have high infrared transmittance of ~81.9%, small OH absorption coefficient and long mid-infrared cut-off wavelengths (~7.5 μm). The surface morphology of host glass was characterized by scanning electron microscopy (SEM) micrograph and energy dispersive spectroscopy (EDS) tests reflect that the doped compositions are distributed into the matrix glass homogeneously. The results of thermal analysis show that the glasses have good thermal properties (Tg > 769 °C). Excited by 980 nm laser, an intense 1810 nm fluorescence is obtained originating from the transition: 3F43H6 of Tm3+ ion, accompanied by upconversion emission. It can be observed that 1810 nm fluorescence has the highest intensity at 1 mol% Yb2O3 and owns broad full width at half-maximum (>245 nm), the luminescence intensity of 3F43H6 transition increases with rising temperature from 300 to 550 K. Furthermore, the value of energy transfer efficiency shows that Yb3+ can transfer energy to Tm3+ effectively. By fitting the attenuation curves, the lifetimes of 1810 and 474 nm emission can be acquired.  相似文献   

7.
《粉末冶金学》2013,56(2):124-134
Abstract

Water atomised Cu–Cr–Zr alloy powders were consolidated by inverse warm extrusion and by the commercial continuous rotary extrusion method, Conform. Those alloys consolidated by inverse warm extrusion exhibited enhanced mechanical properties compared with their respective Conform extruded counterparts, when tested at both room and elevated temperatures. The processing parameters adopted in the inverse extrusion experiments resulted in products which retained enough amounts of solutes in solid solution, which in turn, led to improved mechanical properties after aging. Conversely, the excessive adiabatic heat generated in the Conform machine eliminated the saturation effect produced by rapid solidification, negating any possible further improvement on the mechanical properties by aging. The mechanical properties of an inverse extruded Cu–2.8Cr–0.39Zr (at.-%) alloy at temperatures above 450°C were higher than those strengths reported for Cu–Be alloys and comparable to that of Cu–Ta and Cu–Nb composites. Therefore, rapidly solidified Cu–Cr–Zr alloys can be possible candidates for replacing such alloy systems for high temperature applications.  相似文献   

8.
Ti–Nb β alloys are a promising alternative as an implant material due to their good properties and low Young’s modulus, compared to other Ti-alloys currently employed as biomaterials. In this study, three materials of the Ti–Nb and Ti–Nb–Fe systems were produced by powder metallurgy techniques starting from TiH2 (TH) powder. Several sintering cycles were employed to evaluate the H2 elimination and the effect of sintering temperature on densification and fraction of β-Ti phase. Also, the influence of alloying element size using two kinds of Fe powder was evaluated. The highest loss of H2 was achieved by decreasing heating rate at the temperature range of hydride decomposition. SEM images and XRD results show mainly a β-Ti phase for TH–40Nb and TH–5Fe–25Nb samples. The TH–12Nb sample shows (α?+?β) microstructure. Fe addition with smaller particle size seems to improve the diffusion of Nb into Ti which promotes a higher β-phase fraction and sample homogeneity.  相似文献   

9.
From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrO2-CaO and ThO2?YO1.5 electrolytes, the chemical potentials of oxygen over the systems Fe+FeCr2O4+Cr2O3 and Fe+FeV2O4+V2O3 were calculated. The values may be represented by the equations: $$\begin{gathered} 2Fe\left( {s,1} \right) + O_2 \left( g \right) + 2Cr_2 O_3 \left( s \right) \to 2FeCr_2 O_4 \left( s \right) \hfill \\ \Delta \mu _{O_2 } = - 151,400 + 34.7T\left( { \pm 300} \right) cal \hfill \\ = - 633,400 + 145.5T\left( { \pm 1250} \right) J \left( {750 to 1536^\circ C} \right) \hfill \\ \Delta \mu _{O_2 } = - 158,000 + 38.4T\left( { \pm 300} \right) cal \hfill \\ = - 661,000 + 160.5T\left( { \pm 1250} \right) J \left( {1536 to 1700^\circ C} \right) \hfill \\ 2Fe\left( {s,1} \right) + O_2 \left( g \right) + 2V_2 O_3 \left( s \right) \to 2FeV_2 O_4 \left( s \right) \hfill \\ \Delta \mu _{O_2 } = - 138,000 + 29.8T\left( { \pm 300} \right) cal \hfill \\ = - 577,500 + 124.7T\left( { \pm 1250} \right) J \left( {750 to 1536^\circ C} \right) \hfill \\ \Delta \mu _{O_2 } = - 144,600 + 33.45T\left( { \pm 300} \right) cal \hfill \\ = - 605,100 + 140.0T\left( { \pm 1250} \right) J \left( {1536 to 1700^\circ C} \right) \hfill \\ \end{gathered} $$ . At the oxygen potentials corresponding to Fe+FeCr2O4+Cr2O3 equilibria, the electronic contribution to the conductivity of ZrO2?CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 950°C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.  相似文献   

10.
《粉末冶金学》2013,56(2):146-152
Abstract

The use of Fe2Al5–FeAl2 prealloyed powders and heating rates >150 K min?1 overcomes the formation of density restricting Kirkendall porosity in the Fe–Al system. X-ray diffraction, electron probe micro analysis and differential thermal analysis suggest that the absence of a persistent liquid, experienced when liquid phase sintering with elemental powders, is overcome. Homogenisation is greater during heating at a rate of 20 K min?1 than for 150, 250 or 400 K min?1 and homogenous Fe3Al forms across the compact at temperatures below the melting point of the liquid forming constituent, indicating that a liquid will not form under such processing conditions. The maximum density achieved under the processing conditions in the present study is 92% of theoretical density. The presence of large pores shortly after liquid formation suggests that the remaining porosity is largely due to powder agglomeration during mixing.  相似文献   

11.
Upconversion properties of Y2O3:Er films prepared by sol-gel method   总被引:1,自引:1,他引:1  
Y2O3:Er3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er3+ flints were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er3+ f'rims might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (2H11/2→4I15/2, 4S3/2→4I15/2) and red (4F9/2→4I15/2) upconversion emissions. The upconversion mechanisms were stud-led in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er3+ was also investigated.  相似文献   

12.
Abstract

Extremely dense zirconia–mullite composites were developed by reaction sintering of microcalcined fine alumina powder and zircon flour taken in different ratios with Cr2O3 as an additive. The powder mixes were isostatically pressed and sintered at 1550°C. The sintered compacts were characterised by different physicomechanical properties, microstructure developed and phase compositions. Cr2O3 exhibited positive influence up to certain level of addition on the thermomechanical properties of reaction sintered zirconia–mullite composites including corrosion resistance and microstructure.

On a développé des composites extrêmement denses de zircone et mullite par frittage réactif de poudre fine d’alumine micro calcinée et de farine de zircone en différentes proportions, avec du Cr2O3 comme adjuvant. On a pressé les mélanges de poudres au moyen d’une presse isostatique et on les a frittés à 1550°C. On a caractérisé les différentes propriétés physico mécaniques, la microstructure développée et la composition de phases des compacts frittés. Le Cr2O3 exhibait une influence positive jusqu’à un certain niveau d’addition sur les propriétés thermomécaniques des composites de zircone et mullite à frittage réactif, incluant la résistance à la corrosion et la microstructure.  相似文献   

13.
Spray-drying process was selected to agglomerate ball milled NiCoCrAlY–Al2O3 composite powders. The effect of the starting alloy powder size on the morphology of composite powder was studied. The parameters of milling were optimised by orthogonal experiment to improve the powder’s flowability and apparent density. Then the optimised powder was sprayed by air plasma spray to prepare NiCoCrAlY–Al2O3 composite coating. The results showed that the size distribution of starting particles decided the deformation of alloy particles and the characteristics of agglomerated powders eventually. With the decreasing size range of the starting alloy particles, the sphericity of agglomerated powders increased. The optimised milling parameters were as follows: solid content, 60?wt-%; BPR, 4:1; the rotating speed, 350?rev?min?1; and milling time, 5?h. And the contribution of solid content was the largest. The Al2O3 splats showed good adhesion with alloy matrix when the composite powder melted in good condition.  相似文献   

14.
Amorphous phosphor 1.4Y2O3·2.5Al2O3·0.1Tb2O3 (the same composition as Y2.8Tb0.2Al5O12) was prepared via a sol-gel method at relatively low temperature (i.c., below 650 ℃), which is much lower than that for the preparation of polycrystalline Y3Al5O12:Tb3 (above 1400 ℃). The amorphous phosphor prepared in the optimized conditions showed a bright green-yellowish luminescence, the intensity of which was comparable with that of polycrystalline sample and the emissions of which were assigned to 5D4→7Fj transitions of Tb3 . Besides the emissions of Tb3 , the amorphous samples prepared at temperatures below 500 ℃ presented a weak blue emission band around 420 nm.  相似文献   

15.
16.
With the increasingly strict requirements of blast furnaces on the sinter quality, analyzing the phase transition process and reaction mechanism of special elements in the sintering process plays an important role in understanding the sintering process and improving the sinter quality. Herein, the decomposition process of barite during sintering and the influence mechanism on the bonding phase of calcium ferrite are studied by laboratory experiments and thermodynamic calculations. The results show that calcium ferrite and ferric oxide can promote the decomposition of barite and reduce the decomposition temperature in the sintering process. The generated barium enters the calcium ferrite phase and affects the strength and melting point of calcium ferrite. With the increase of barium content, the strength of calcium ferrite sample increases from 1.62 to 2.00 kPa, and the initial melting temperature of calcium ferrite sample stays at 1473 K. However, with the further increase of barium, the sample strength and melting temperature both show a worsening trend. Finally, based on the research results, some suggestions for sintering production are put forward, and the optimal barite content is determined. Results help to better understand the reaction process and action mechanism of barium in the sintering process.  相似文献   

17.
To promote the electrocatalytic activity and stability of traditional La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) oxygen electrodes in reversible solid oxide cells (RSOCs), conventional physical mixed method was used to prepare the Pd-LSCF composite oxygen electrode. The cell with Pd-LSCF|GDC|YSZ|Ni-YSZ configuration shows perfect electrochemical performance in both solid oxide fuel cell (SOFC) mode and solid oxide electrolysis cell (SOEC) mode. In the SOFC mode, the cell achieves a power density of 1.73 W/cm2 at 800 °C, higher than that of the LSCF oxygen electrode with 1.38 W/cm2. In the SOEC mode, the current density at 1.5 V is 1.67 A/cm2 at 800 °C under 50 vol% steam concentration. Moreover, the reversibility and stability of the RSOCs were tested during 192 h long-term reversible operation. The degradation rate of the cell is only 2.2%/100 h and 2.5%/100 h in the SOEC and the SOFC modes, respectively. These results confirm that compositing Pd with the LSCF oxygen electrode can considerably boost the electrochemical performance of LSCF electrode in RSOCs field.  相似文献   

18.
19.
20.
A novel method to synthesise sub-micron FeWB powders is proposed, by which pure-phase FeWB powders with a particle size of ~500?nm were successfully obtained. This method consists of three steps: water atomisation, annealing treatment and acid dissolution of the matrix. Systematic characterisation was carried out throughout the preparing process to determine the detail phase evolution, chemistry features as well as the changes in particle size. It was found out that the as-atomised powders consisted of only α-Fe solid solution where W and B atoms are dissolved as solute atoms. And the annealing treatment could facilitate the precipitation of W and B atoms from the matrix to form tiny dispersive continuous net-like precipitates. Analyses showed that Fe6W6C, Fe3W3C and FeWB were precipitated in sequence during the annealing process. And following the chemical treatment, the α-Fe matrix and surface oxide layers could be completely removed and FeWB powders could be successfully recovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号