首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Dense Ti3SiC2 bulk ceramic was synthesised by hot pressing of elemental titanium, silicon, and carbon powders. The effects of starting composition of the powders on the synthesis of pure Ti3SiC2 were examined. Phase identification was carried out by X-ray diffraction. Silicon content in the starting composition played an important role in formation of the final constituent phases in the composite. It was difficult to obtain the pure phase Ti3SiC2 because other thermodynamically stable reaction products such as TiC, TiSi2, or Ti5Si3 were always present together with Ti3SiC2. The microstructure of samples was examined using scanning electron microscopy and transmission electron microscopy. Observations showed that the Ti3SiC2 matrix was composed of elongated, platelike, and equiaxial grains. It is suggested that the hexagonal crystal Ti3SiC2 exhibits anisotropic grain growth behaviour. The relative growth rates on different planes, therefore, endow Ti3SiC2 with several morphologies.  相似文献   

2.
周延春 《材料导报》2000,(Z10):251-252
用透射电子显微镜研究了Ti3SiC2材料中Ti3SiC2与TiC的界面关系。结果表明TiC和Ti3SiC2颗粒都可能生长在另一相中,Ti3SiC2中的TiC颗粒与Ti3SiC2没有明显的晶体学关系,而TiC中的Ti3SiC2与TiC之间有下列晶体学关系,(111)TiC//(0001)Ti3SiC2,(002)TiC//(1 1^-04)Ti3SiC2,(1 1^-0)TiC//「110」Ti2SiC2。  相似文献   

3.
Tribological Behavior of Ti3SiC2—based Material   总被引:3,自引:0,他引:3  
The wear and friction properties of Ti3SiC2-based materials were studied using the pin-on-disc method. The friction coefficient of Ti3SiC2-based material was not very sensitive to normal load, the steady state value, μ, increased from 0.4 to 0.5 when the normal load increased from 7.7 N to 14.7 N. The wear volume for Ti3SiC2 disc increased with increasing normal load or sliding distance in the tests. The average wear rate of Ti3SiC2-based material was 9.9×10-5 mm3/Nm. The debris on the Ti3SiC2 disc was essentially made up of Ti3SiC2 and steel pin materials, while the debris on the steel sliders was generally pin material. The wear mechanism was concluded as the fracture and delamination of Ti3SiC2-based materials followed by adhesive wear of steel sliders.  相似文献   

4.
Abstract

The mechanical properties of 20 vol.-%SiC whisker reinforced ZrO2?V2O3 composites containing 2 and 6 mol.-% Y2O3 were measured at room temperature and the fracture surface was examined. The results indicate that the mechanical behaviour of the composites is strongly influenced by the Y2O3 content. The magnitude of the enhancement of the toughness in composites containing 2 mol.-% Y2O3 compared with unreinforced ZrO2?Y2O3 matrix is larger than that for the composites containing 6 mol.-% Y2O3. Crack propagation modes were characterised by crack deflection, whisker bridging, and whisker pullout. High resolution electron microscopic observations show that in composites containing 2 mol.-% Y2O3 the whiskers are directly bonded to the matrix. However, in composites containing 6 mol.-% Y2O3 there is always a thick amorphous layer at the interface, indicating that the high Y2O3 content has promoted the formation of interfacial amorphous layers. These interfacial amorphous layers strengthen the interfacial bonding, resulting in a composite with a low fracture toughness.

MST/2043  相似文献   

5.
The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method.By using the calculated band structure and density of states,the high electrical conductivity of Ti3SiC2 are explained ,The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.  相似文献   

6.
新型层状陶瓷材料Ti3SiC2   总被引:7,自引:0,他引:7  
六方晶Ti3SiC2是由Si原子形成的Si层被TiC八面体连接起来的构成的层状晶体结构,这种结构赋予它象石墨一样具有润滑性和可加工性,时结合了金属和陶瓷的许多优良性能,具有较好的导电性和导热性,高温延性,抗热震,高强度以及抗氧化等。在国内外研究资料的基础上,对此材料的晶体结构,制备方法,各种性能等方面的研究做了较系统地论述,并展望了此材料的研究方向。  相似文献   

7.
汤珂  汪长安 《材料导报》2000,(Z10):108-109
提出了关于Ti3SiC2晶粒生长的模型。在Tis3SiC2晶粒的生长中,Ti6C八面体可以作为一个独立的生长单元,Ti6C八面体的联接方式(如共面,共梭、共顶)将会对Ti3SiC2的生长形貌和生长行为产生很大的影响。这个模型可以解释有关Ti3SiC2生长形貌的许多现象,如在使用CVD法制备Ti3SiC2时出现的{112^-0}织构。  相似文献   

8.
Shear strength and shear-induced Hertzian contact damage in Ti3SiC2 were investigated using double-notched-beam specimen and steel spherical indenter, respectively. The shear strength of 40 MPa that was only about 10% of bending strength was obtained for this novel ceramic. The SEM fractograph of specimens failed in shear test indicated a combination of intergranular and transgranular fracture. Under a contact load, plastic indent without cone crack could be formed on the surface of Ti3SiC2 sample. Optical observation on side view showed half-circle cracks around the damage zone below the indent, and the crack shape was consistent with the contrail of the principal shearing stress. The low shear strength and the shearing-activated intergranular sliding were confirmed being the key factors for failure in Ti3SiC2.  相似文献   

9.
The effects of Ti3AlC2 content on the physical, mechanical, and arc ablation resistance properties of a fabricated Cu–Ti3AlC2 composite are investigated in detail. Composite samples containing 10, 15, 20, 25, 30, and 35 vol.-% Ti3AlC2 are sintered at 800°C without decomposition of Ti3AlC2. It is demonstrated that with increasing Ti3AlC2 content, the relative density, electrical conductivity, and flexural strength of Cu–Ti3AlC2 decrease but the Brinell hardness first increases and then decreases. After eroded by an electric arc, Cu–Ti3AlC2 oxidises to CuO, TiO2, and Al2O3. Meanwhile, field emission-SEM observations reveal that the dimensions of protrusions and the percentage of TiO2 increase with increasing Ti3AlC2 content. Remarkably, the electric arc mainly occurs at the Ti3AlC2 particles, and the Cu matrix remains well protected.  相似文献   

10.
Ta2O5, Nb2O5 and TiO2 were used separately as additives to a Li2O·Al2O3·6SiO2 glass-ceramic composition, to act as nucleating dopants and to aid the formation of an interfacial carbide layer (TaC and NbC) between the fibre and matrix in SiC fibre uniaxially reinforced glass-ceramic composites, The composites exhibited high modulus of rupture (>800 MPa) and fracture toughness (K IC > 15 MPam1/2). The interfacial amorphous carbon rich layer and carbide layer were responsible for lowered interfacial shear strength but permitted high composite fracture toughness. The composite with the TiO2 additive in the matrix showed a lower flexural strength (<500MPa) and a smaller K IC (-11 MPam1/2) which resulted from the high interfacial shear strength between the SiC fibre and the matrix due to the formation of the interfacial TiC layer.  相似文献   

11.
Abstract

Microstructure, mechanical properties, fracture behaviour, and toughening mechanisms of hot pressed SiC whisker (SiCw)

reinforced ZrO2–6 mol.-%Y2O3 composites were investigated via transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and mechanical testing. The experimental results show that there is a continuous increase in the Vickers hardness, elastic modulus, and fracture toughness of the composites with increasing SiCw content, and an addition of 30 vol.-%SiCw increases the fracture toughness from 3·42 MN m?3/2 for the unreinforced matrix to 5·83 MN m?3/2. The flexural strength is increased from 293 MN m?2 for the unreinforced matrix to a maximum of 372 MN m?2 by an addition of 10 vol.-%SiCw, then it is significantly decreased by further increasing the SiCw content. Observations via transmission electron microscopy show that no distinct second phase or intermediate layers form at the SiCw/ZrO2 interface. Diffusional separation of tetragonal phase from the cubic matrix occurred during cooling after hot pressing. Whisker bridging and crack deflection are the main toughening mechanisms, but whisker pull-out, crack branching, and refinement of the matrix particles also contribute to the improvement in the fracture toughness.

MST/1747  相似文献   

12.
Ti3SiC2陶瓷的能量耗散机理   总被引:3,自引:0,他引:3  
采用维氏和赫兹压痕法研究了Ti3SiC2接触损伤及其演变.结果表明,在维氏压痕接触损伤区从表面到纵深的不同损伤排序为:表面的晶粒粉碎,亚表面的晶粒分层或破碎,再远处的晶粒完好;在赫兹压痕接触损伤区剪切损伤带以内的晶粒破碎,剪切带以外的晶粒完好.因此,造成压痕处的局部能量耗散,使应力传递受限、应力集中下降,使这种三元层状陶瓷具有准塑性特征.用声发射(Acoustic Emission,简称AE)系统监测赫兹压痕加卸载过程中的局部损伤过程,发现在加载过程中声发射信号密集,卸载过程声发射信号稀疏,证明了损伤和局部能量耗散的不可逆性.Ti3SiC2陶瓷的能量局部耗散机理是弱晶界面开裂和晶粒分层导致的局部软化和破碎,在损伤区范围内吸收能量并使局部应力释放.  相似文献   

13.
三元层状碳化物Ti3SiC2的研究进展   总被引:11,自引:1,他引:10  
本文综合介绍Ti3SiC2的最新研究进展。三元碳化物Ti3SiC2属于层状六方晶体结构,空间群为P63/mmC;它同时具有金属和陶瓷的优良性能,有良好的导电和导热能力,高弹性模量和低维氏显微硬度,在室温下可切削加工,在高温下能产生塑性变形,良好的高温热稳定性和优秀的抗氧化性能;应用CVD、SHS、HP/HIP等方法可制备该化合物,用HIP方法能制备高纯、致密的Ti2SiC2陶瓷;Ti3SiC2陶瓷材料自身有抵抗损伤的机理。  相似文献   

14.
本文综合介绍Ti3SiC2的最新研究进展.三元碳化物Ti3SiC2属于层状六方晶体结构,空间群为P63/mmC;它同时具有金属和陶瓷的优良性能,有良好的导电和导热能力,高弹性模量和低维氏显微硬度,在室温下可切削加工,在高温下能产生塑性变形,良好的高温热稳定性和优秀的抗氧化性能;应用CVD、SHS、HP/HIP等方法可制备该化合物,用HIP方法能制备高纯、致密的Ti3SiC2陶瓷;Ti3SiC2陶瓷材料自身有抵抗损伤的机理.  相似文献   

15.
汪长安  汤珂 《材料导报》2000,(Z10):256-258
从TiC和Ti3SiC2的晶体结构出发,分析了析出的TiCx晶粒与Ti3SiC2晶粒的位相匹配关系和析出行为,研究了TiCx晶粒的析出对Ti3SiC2材料力学性能的影响。研究发现,TiCx在Ti3SiC2的基面上析出,二者之间的界面分别为TiCx和Ti3SiC2中Ti原子的密排面,而且错配度较低。从TiCx与Ti3SiC2晶粒的位相匹配关系,推断出TiCx{111}∥Ti3SiC2{0001}、TiCx{111}∥Ti3SiC2{202^-5}、TiCx{001}∥Ti3SiCz{101^-5}。TiCx相的析出会降低Ti3SiC2材料硬度和韧性。  相似文献   

16.
The crystalline structure and dielectric properties of BaZr x Ti1−x O3 ceramics with x = 0.05, 0.10, 0.15, and 0.20 were investigated. As zirconium increased, the a-axis lattice constant gradually increased, however, the c-axis lattice constant and c/a ratio gradually decreased. When x = 0.20, the crystal structures of the BZT ceramics are very close to cubic, different from the tetragonal structure when x < 0.20. The temperature dependence of the dielectric constant was studied and an enhanced diffuse phase transition behavior is found to be caused by the increased Zr content. The decreases of coercive electric field and remanent polarization were the result of increase of Zr/Ti ratio in BaZr x Ti1−x O3.  相似文献   

17.
以铝为助剂结合放电等离子烧结工艺,在较低温度下快速制备出高纯致密Ti3SiC2块体材料.掺加适量铝能加快Ti3SiC2的反应合成,提高制备材料的纯度,并促进Ti3SiC2晶体的生长和材料的快速烧结致密.在升温速率为80℃/min,z轴压力为30MPa时,材料制备的最佳温度为1250~1300℃.所制备材料经XRD、SME和EDS分析表明不含TiC和SiC等杂质相,Ti3SiC2为5~15μm的板状结晶,断裂韧性为6.8±0.2MPa·m1/2,弯曲强度为420±10MPa.  相似文献   

18.
介绍了三元层状化合物Ti3SiC2的结构、各种性能特征及其常用的制备方法,包括CVD法、自蔓延高温合成法摘要和热压烧结成型法等。论述了三元层状Ti3SiC2材料的抗高温氧化及氧化动力学规律,以及在高温熔盐体系下的腐蚀动力学规律。  相似文献   

19.
C/SiC–ZrB2 composites prepared via precursor infiltration and pyrolysis (PIP) were treated at high temperatures ranging from 1200 °C to 1800 °C. The mass loss rate of the composites increased with increasing annealing temperature and the flexural properties of the composites increased initially and then decreased reversely. Out of the four samples, the flexural strength and the modulus of the specimen treated at 1400 °C are maximal at 216.9 MPa and 35.5 GPa, suggesting the optimal annealing temperature for mechanical properties is 1400 °C. The fiber microstructure evolution during high-temperature annealing would not cause the decrease of fiber strength, and moderate annealing temperature enhanced the thermal stress whereas weakened the interface bonding, thus boosting the mechanical properties. However, once the annealing temperature exceeded 1600 °C, element diffusion and carbothermal reduction between ZrO2 impurity and carbon fibers led to fiber erosion and a strong interface, jeopardizing the mechanical properties of the composites. The mass loss rate and linear recession rate of composites treated at 1800 °C are merely 0.0141 g/s and 0.0161 mm/s, respectively.  相似文献   

20.
The effect of SrO–B2O3–SiO2 glass additive (SBS) on the microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics was investigated. This SBS–added CCTO ceramics were prepared by the solid state reaction. The undesirable impurity phases Ca3SiO5 started appearing in the XRD patterns, suggesting a possible chemical reaction between CaTiO3 and SiO2 (the devitrification production of SBS glass). The SBS glass additive promoted the grain growth and densification of CCTO ceramics. Cole–Cole plots of conductance suggested that the resistivity grain boundary decreased with increasing amount of SBS glass (when x = 0–2 wt%), then increased (when x = 2–3 wt%). The addition of SBS glass was desirable to increase the dielectric constants (up to 104) and lowered the dielectric losses of CCTO over the frequency range of 450–40 kHz at the relatively lower sintering temperature for relatively shorter sintering time (1,050 °C, 12 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号