首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Paper-reinforced plastics are gaining increased interest as packaging materials, where mechanical properties are of great importance. Strength and stress transfer in paper sheets are controlled by fibre–fibre bonds. In paper-reinforced plastics, where the sheet is impregnated with a polymer resin, other stress-transfer mechanisms may be more important. The influence of fibre–fibre bonds on the strength of paper-reinforced plastics was therefore investigated. Paper sheets with different degrees of fibre–fibre bonding were manufactured and used as reinforcement in a polymeric matrix. Image analysis tools were used to verify that the difference in the degree of fibre–fibre bonding had been preserved in the composite materials. Strength and stiffness of the composites were experimentally determined and showed no correlation to the degree of fibre–fibre bonding, in contrast to the behaviour of unimpregnated paper sheets. The degree of fibre–fibre bonding is therefore believed to have little importance in this type of material, where stress is mainly transferred through the fibre–matrix interface.  相似文献   

2.
With a direct nucleophilic addition between  OH groups of polydiol and  NCO of a silane, a blend of silyl-terminated polycaprolactone PCL-Si and silyl-terminated polydimethylsiloxane PDMS-Si oligomer, PCS-2Si, were firstly prepared, and then blended with a commercial epoxy resin (diglycidyl ether of bisphenol-A, DGEBA) to form a ternary composite. The formed ternary composites of different content of DGEBA were cured using a polyamidoamine as a curing agent and a sol–gel process at ambient temperature. The microstructures and properties of the cured composites were investigated by SEM, TGA, and energy dispersive spectroscopy. The results showed the compatibility between DGEBA and PDMS increased with increasing content of PCS-2Si, but higher content of PCS-2Si resulted in a slight enrichment of silicon in the surface of the cured film. TGA showed that incorporating PCS-2Si into epoxy resin altered the composites' thermal stability and degradation characteristics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Composite samples were obtained from hydroxyapatite powder and carbon fibres by hot pressing at 1100°C and 25 MPa for 15 min in argon atmosphere. Two types of cut carbon fibres produced in a carbonisation process of polyacrylonitrile (PAN) precursor were used both in non-coated or coated form. The coatings of calcium phosphate were applied by sol–gel technique. The highly sintered composite with the best strength properties was obtained from coated carbon fibres with basic character of the surface. The existence of hydroxyl groups on fibre surface makes possible formation of bonds with the calcium phosphate layer formed as a result of polycondensation following the sol–gel procedure.  相似文献   

4.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Epoxy composites filled with copper particles with sizes of the order of 100 μm are studied with the aim of analyzing the particle–matrix interphase. Two matrixes are used: diglycidyl ether of bisphenol A resin (DGEBA)–anhydride catalyzed using a tertiary amine, and uncatalyzed DGEBA–anhydride. The surface of both types of composites was analyzed using scanning electron microscopy, X-ray photoelectron spectroscopy, and instrumented nanoindentation. The formation of Cu(I) and Cu(II) complexes is revealed using X-ray photoelectron spectroscopy, while instrumented nanoindentation measurements allow us to determine regions with different mechanical properties in the uncatalyzed composite. The influence of anhydride and the type of curing reaction on the formation of copper complexes is analyzed. The main results point out that copper particles can interact strongly with the epoxy, depending on the chemistry and kinetics of the curing reaction, to modify the composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47511.  相似文献   

6.
The uniform dispersion of graphene (GN) in a polymer matrix is still challenging at high loadings. In this study, we introduced a tiny number of cellulose nanowhiskers (CNWs; CNWs/GN = 1:20 w/w) to improve the dispersion of GN nanoplatelets in a waterborne epoxy (WEP) matrix at a GN loading of 1.0 wt %. Compared with that of 1.0% GN–WEP, the Young's modulus of the 1.0% GN–WEP–CNWs was enhanced by about 20.5%. The glass-transition temperature increased from 70.4°C for 1.0% GN–WEP to 72.8°C for 1.0% GN–WEP–CNWs. The water contact angle of composite film increased by 17°, from about 79° for the film without CNWs to about 96° for the film with CNWs. The anticorrosion efficiency of the coatings was also evaluated with the potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results reveal the CNW-containing coating showed better corrosion resistance for mild steel and could be applied as a green dispersant for GN in WEP coatings. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47631.  相似文献   

7.
CNT/Al–Cu composites were fabricated by mixing of Al powders and CNT/Cu composite powders which were prepared by molecular level mixing process. The CNT/Al–Cu–Cu composites show a microstructure with a homogeneous dispersion of CNTs in the Al–Cu matrix and had a 3.8 times increase of yield strength and 30% increase of elastic modulus compared to Al–Cu matrix. The strengthening mechanism of CNT/Al–Cu composites was discussed by controlling the aspect ratio of CNTs and it was thought that the CNT/Al–Cu composites were strengthened by both load transfer from the Al matrix to the CNTs and dispersion strengthening of damaged short CNTs. At the same time, the addition of CNTs increases the grain refinement effect of the Al–Cu matrix which results in a grain size strengthening mechanism of the CNT/Al–Cu composites.  相似文献   

8.
The precipitation hardening behavior of CNT/Al–Cu composites was investigated by characterization of microstructure and mechanical properties after aging heat treatment. It was found that CNTs accelerated the precipitation hardening behavior of CNT/Al–Cu composites due to the generation of excess dislocations. The CNT/Al–Cu composites; after aging heat treatment, show significant increase of yield and ultimate tensile strength compared to those values for the Al–Cu matrix; the composites also show an increase rate similar to that of CNT/Al–Cu composites without aging heat treatment. It was thought that the CNT/Al–Cu composites were strengthened by both the load transfer from the Al–Cu matrix to the CNTs and by precipitation hardening of the Al–Cu matrix.  相似文献   

9.
Carbon fibre–phenolic matrix (CF–P) composites containing graphene nanoplatelets (GNPs) were manufactured for improved mechanical and thermal properties. For comparison, micrometer-size pyrolytic graphite powder (GP) was also incorporated in CF–P composites. The loading of carbon fibres was kept constant at 60?wt-% while the quantity of GNPs was varied from 0.1?wt-% to 0.3?wt-% and GP from 1.0?wt-% to 3.0?wt-%. Only GNPs were functionalised by ultraviolet-ozone treatment to improve their dispersion in the matrix while all the composites were manufactured by hand layup method and characterised by scanning electron microscopy, impact, flexural, thermogravimetry and ablation tests. The composite containing 0.3?wt-% GNPs showed considerable improvement in ablation, flexural and impact testing as compared to CF-P composites containing GP. Finally, the ablation mechanisms of post-ablated composites were discussed in the light of available data in the literature.  相似文献   

10.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

11.
To develop the functional particles with better flame-retardant and compatibility with epoxy resin (EP) matrix, organic–inorganic double-shell microencapsulated aluminum hypophosphite (MSiAHP) was prepared by situ polymerization. The water contact angles of MSiAHP (62.4°) is significantly larger than that of aluminum hypophosphite (34.4°), which shows that the organic shell material of MSiAHP endows excellent hydrophobicity and water resistance. With the incorporation of MSiAHP, EP/30%MSiAHP composite exhibits limiting oxygen index value of 27.3% and V-0 rating. Furthermore, the cone calorimetry test reveals that MSiAHP reduces the peak heat release rate, total heat release and total smoke release of EP matrix by 33.3%, 24.4% and 56.6%, respectively. Besides, due to the unique organic–inorganic double-shell structure of MSiAHP particles, EP/30%MSiAHP composite achieves greater thermal stability and higher char yields than pure EP. The investigation of the products in the gas and condensed phase demonstrates that MSiAHP is beneficial to the generation of a high-density and compact carbon layer structure with a high graphitization degree, and delay the generation time of pyrolysis products in the gas phase, which can improve the fire safety of EP composites effectively. Furthermore, preeminent dispersion and compatibility of MSiAHP lead to EP/MSiAHP composites with excellent mechanical properties.  相似文献   

12.
The regularities of intermolecular and chemical interactions of aramid fibers and the epoxide matrix have been studied. The strength of the composite interface has been shown to be determined by the fiber–matrix joint.  相似文献   

13.
Organic–inorganic hybrids comprising epoxy resin and polyhedral oligomeric silsesquioxanes (POSSs) were prepared via in situ polymerization of the diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenylmethane (DDM). The POSSs have an active functional group that takes part in the ring-opening reaction with the oxirane group. The organic and inorganic moieties are joined by covalent bonds. These covalent bonds enhance the compatibility of the inorganic and organic phases. Scanning electron microscope (SEM) analytical results indicate that there was no obvious phase separation between the inorganic and organic phases. The UV/VIS spectrum of the epoxy hybrid demonstrates the excellent optical transparency of the hybrids—the most important characteristic for their application as protective coatings. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), and nuclear magnetic resonance spectroscopy (NMR) of the char showed that the incorporation of the POSSs into epoxy resin improves the thermal stability of the hybrids.  相似文献   

14.
15.
Double crosslinked chitosan–zeolite (CZ-2) and noncrosslinked chitosan–zeolite (CZ-0) composites were prepared and characterized by using Fourier transform infrared (FTIR) spectrometer, surface area analyzer, scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) spectrometer, thermogravimetric analyzer (TGA), X-ray diffraction analyzer (XRD) and carbon, hydrogen, nitrogen (CHN) analyzer. After crosslinking, CZ-2 showed a reduction in surface area and CHN content in comparison to chitosan, zeolite, and CZ-0. Crosslinking resulted in improved stability of CZ-2 in distilled water, acetic acid and NaOH as CZ-2 recorded the lowest percentage of swelling. XRD diffractograms confirmed the formation of composites as there was a marked difference in the peak intensity at 2θ = 19.8°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Mullite–Mo composites of different compositions (0–100 vol.% Mo) were sintered to near theoretical density by pulse electric current sintering (PECS). The densification behaviour and the microstructure of mullite–Mo composites as a function of Mo content were studied. The addition of 10 vol.% Mo significantly enhanced the strength and toughness of monolithic mullite to 556 MPa and 2.9 MPa m1/2, respectively. SEM observations revealed the modification of discrete isolated Mo particles to continuosly interconnected network with the increase in the Mo content. Mo grains were located at the grain boundaries as well as inside the mullite grains. The addition of Mo to monolithic mullite led to a change in the fracture mode.  相似文献   

17.
Adhesive lap joint between glass fibre/epoxy composites and aluminium alloy (2014 T4) was prepared by an in situ moulding process using a matched die mould. The surface of aluminium alloy was treated with chromic acid before adhesive bonding. Lap shear strength and fatigue life were evaluated in tensile mode and tension–compression mode (at 40% of lap shear load of adhesive joint), respectively. Knurling on the surface of aluminium alloy improved the lap shear strength of the adhesive joint but did not influence the fatigue life of the same. Lap shear strength and fatigue life of adhesive joint made with neat epoxy adhesive and reinforcement of an intermediate layer of Kevlar® between glass/epoxy composite and aluminium alloy were observed to be 0.44?kg/mm2 and 3.6?×?105 cycles, respectively. In another case, lap shear strength and fatigue life of similar type of adhesive joint made from nanoclay (Cloisite 30B)-reinforced epoxy adhesive and without reinforcement of an intermediate layer of Kevlar® were observed to be 0.38?kg/mm2 and 2.3?×?105 cycles, respectively. Whereas, lap shear strength and fatigue life of adhesive joint made from nanoclay-reinforced epoxy adhesive along with the reinforcement of an intermediate layer of Kevlar® were 0.48?kg/mm2 and 3.9?×?105 cycles, respectively. Therefore, adhesive joint made from nanoclay-reinforced epoxy adhesive along with the reinforcement of an intermediate layer of Kevlar® was the best.  相似文献   

18.
A novel trizine ring-based phosphorus–nitrogen flame retardant, 1,3,5-tris(3-(diphenylphosphoryl)propyl)-1,3,5-triazinane-2,4,6-trione (PN), was synthesized by the reaction of diphenylphosphine oxide and triallyl isocyanurate with triethylborane as catalyst. Chemical structure of the target compound was confirmed by Flourier transform infrared spectrum, nuclear magnetic resonances, matrix-assisted laser desorption/ionization time-of-flight mass spectrum measurements. The newly developed PN was used in the flame retardancy of o-cresol novolac epoxy/phenolic novolac hardener system. For comparison, another analogous phosphorus–silicon flame retardant, [(1,1,3,3-tetramethyl-1,3-disiloxanediyl)-di-2,1-ethanediyl]-bis(diphenylphosphine oxide) (PSi), was also applied in the same system. Experimental results revealed that PN showed superior flame retardant efficiency to that of PSi. In addition, the incorporation of flame retardants was in favor of the char formation during the thermal degradation process of epoxy thermosets. With the same flame retardant content, the char residue of epoxy thermosets with PSi was higher than that of epoxy thermosets with PN at 750 °C. Cone calorimeter results indicated that PN contributed to gas phase flame retardancy while PSi was more likely to take part in flame retardancy in the condense phase. X-ray photoelectron spectroscopy data revealed that the binding energies of phosphorus changed in different ways in PN and PSi after combustion. This implied that phosphorus exhibited different combustion behaviors when combined with nitrogen or silicon.  相似文献   

19.
Under conditions of shear deformations, low-density polyethylene (LDPE) and polylactide (PLA) composites are obtained in rotor disperser. The production of these composites allows one to use polymers derived from natural raw and to reduce the cost of the materials on their base. The addition of rigid PLA leads to increase in elastic modulus from 200 for LDPE to 1190 for LDPE–PLA (50:50 wt %) composites and in tensile strength from 13.3 for LDPE to 17.8 for LDPE–PLA. By differential scanning calorimetry method, it is shown that LDPE and PLA are incompatible. Using X-ray diffraction analysis, it is found that degree of crystallinity of composites decreases from 46.1 at 50:50 wt % to 36.9 at 80:20 wt % component ratios with the rise in LDPE content. Tests on fungus resistance show that the composites containing 50 wt % PLA are more resistant than the composites containing 30 wt % PLA. First by gel-permeation chromatography method, it is shown that composite degradation after exposure in soil is accompanied by the PLA chain scission and depolymerization with formation of monomers and dimers (M w of PLA decreases from 118,860 to 80,100). The obtained composites can be applied as packaging materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47598.  相似文献   

20.
For the first time, multifunctional epoxy–short carbon fiber reinforced composites suitable for thermal energy storage technology were developed. Paraffin microcapsules (MC) and short carbon fibers (CFs) were added at different relative amounts to an epoxy matrix, and the microstructural and thermomechanical properties of the resulting materials were investigated. Scanning electron microscopy images of the composites showed a uniform distribution of the capsules within the matrix, with a rather good interfacial adhesion, while the increase in the polymer viscosity at elevated CF and MC amounts caused an increase in the void content. Differential scanning calorimetry tests revealed that melting enthalpy values (up to 60 J/g) can be obtained at high MC concentrations. The mixing and thermal curing of the composites did not lead to breakage of the capsules and to the consequent leakage of the paraffin out of the epoxy matrix. The thermal stability of the prepared composites is not negatively affected by the MC addition, and the temperatures at which the thermal degradation process begins were far above the curing or service temperature of the composites. Flexural and impact tests highlighted that the presence of MC reduces the mechanical properties of the samples, while CF positively contributes to retaining the original stiffness and mechanical resistance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47434.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号