首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of quenching and tempering treatments on the development of microstructure and mechanical properties of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel were investigated. Samples were austenitized at 1123–1323 K for 2400 s and oil quenched (OQ) to produce mixed microstructures. Tempering was carried out at 473–773 K for 2–3 h. Phase transformation temperatures were measured using dilatometer. The microstructures were characterized using optical and scanning electron microscope. SEM–EDS analysis was carried out to determine the type and size of non-metallic inclusions. Volume percent of retained austenite was measured by X-ray diffraction technique. Hardness, tensile properties, and impact energies were also determined for all heat treated conditions. Fractography of impact specimens were done using stereomicroscope and SEM. The results showed that newly developed steel exhibited peak hardness, yield strength, and tensile strength of about 600 HV, 1760 MPa, and 1900 MPa, respectively, when OQ from 1203 K and tempered in between 473 and 573 K, combined with adequate ductility and impact toughness. Decrease in hardness and strength was observed with increasing tempering temperature whereas the impact energy was stable up to 623 K, however, impact energy was found to decrease above 632 K due to temper martensite embrittlement.  相似文献   

2.
In this work, the solidification behavior and solidification cracking of Fe–18Mn–0.6C–xAl (x = 1.49, 2.37, 4.79, 6.04 wt%) alloys were investigated. A longitudinal Varestraint test was applied to evaluate the solidification cracking tendency of Al-added high-Mn steel welds. In terms of total crack length and maximum crack length at 4 % applied strain, the solidification cracking susceptibility of high-Mn steel decreased with increasing Al content. Addition of Al suppressed the formation of low melting point eutectics (γ + (Fe,Mn)3C) along the grain boundaries during the final stage of solidification, which resulted in the decrease of solidification cracking tendency. The Al segregated extensively to the dendrite core opposite to Mn and C during solidification, which promoted the formation of δ ferrite. Further, the transition of the solidification sequence from the primary austenitic to primary ferritic mode provided a noticeable improvement in solidification cracking resistance in high-Mn steel welds similar to austenitic stainless steel welds.  相似文献   

3.
Abstract

By adjusting thermomechanical controlled processing parameters, different microstructures were obtained in a low carbon Mn–Mo–Nb pipeline steel. The microstructural characteristic and its effect on low temperature toughness were investigated. The results show that under higher reduction in austenite non-recrystallisation region and faster cooling rate during accelerated cooling, the microstructure is dominated by acicular ferrite (AF) accompanied by a small amount of fine martensite/austenite (M/A) islands. In contrast, lower reduction and slower cooling rate lead to a predominantly quasi-polygonal ferrite microstructure with coarse M/A islands. The fine effective grain size (EGS) and the high fraction of high angle grain boundaries (HAGBs) make the cleavage crack propagation direction deflect frequently. The coarse M/A islands can lead to cleavage microcracks at the M–A/ferrite matrix interfaces. Compared with the microstructure mainly consisting of quasi-polygonal ferrite, the microstructure dominated by AF exhibits excellent low temperature toughness because of fine EGS, high fraction of HAGBs and fine M/A islands.  相似文献   

4.
Metamagnetic shape memory alloys are a unique class of materials capable of large magnetic field-induced strain due to reverse martensitic phase transformation. A precondition for large shape change is martensite deformation, which heavily depends on microstructure. Elucidation of microstructure is therefore indispensable for strain control and deformation mechanics in such systems. The current paper reports on a self-accommodated martensitic microstructure in metamagnetic Ni50Mn37.5Sn12.5 single crystal. The microstructure here is hierarchically organised at three distinct levels. On a large scale, martensite plate colonies, distinguished by intercolony boundaries, group individual martensitic plates. Plates are separated by interplate boundaries and deviate by 2.2° from an ideal twin relation. On the lower scale, plates are composed of subplate twins. Conjugation boundaries separating two pairs of twins arise in relation to a subplate microstructure. Modulation boundaries separating two variants with perpendicular modulation directions and with parallel c-axes also appear. Mechanical training frees larger plates from fine subplate microtwins bringing macro-lamellae into twin relation, what then permits further detwinning until a single variant state.  相似文献   

5.
Failure behavior of low carbon steel resistance spot welds in quasi-static tensile–shear test is investigated. Microstructure, hardness profile and mechanical performance of the spot welds were studied. Results showed that spot welds are failed in two distinct failure modes: double-pullout and interfacial failure modes. There is a critical fusion zone size beyond which, pullout failure mode is guaranteed. Metallographic examination showed that failure is a competitive process between shear plastic deformation of weld nugget and necking of the base metal. In pullout failure mode, only the grain pattern of the base metal changes significantly and that of the fusion zone and heat affected zone remains unchanged. Strain localization was occurred in the base metal due to its low hardness. Moreover, the experimental results showed that increasing the holding time which increases the hardness of the fusion zone did not affect the peak load. It was concluded that in the pullout failure mode, the strength of the spot welds is not affected by the fusion zone strength. Fusion zone size proved to be the most important controlling factor for the spot welds’ mechanical performance in terms of peak load and energy absorption.  相似文献   

6.
The present work investigates the effect of the initial microstructure on phase transformation after intercritical annealing by measuring the amount of austenite, which was obtained by X-ray diffraction and saturation magnetisation. Pieces of 8?Mn steel were austenitised at 1100°C for 1?h followed by different cooling rates: water, air, and furnace. Samples of each piece were subsequently intercritically annealed from 600 to 800°C followed by air cooling. The microstructure was characterised using scanning electron microscopy and electron backscatter diffraction. Results show how changing the cooling rate affects the temperature of intercritical annealing at which the highest content of retained austenite was obtained.  相似文献   

7.
8.
Abstract

The relationships between hardness and the volume fraction of martensite for continuously cooled steels containing 0·1–0·3%C, 1·6%Mn, 0–0·3% V (all wt-%), which are used to measure the hardenability expressed by the ideal critical diameter, have been established. It has been shown that for steels transformed to a fine mixture of lath martensite and lath bainite it is not possible to measure the volume fraction of martensite by means of quantitative optical metallography and therefore the volume fraction of martensite was determined from dilatometric records of continuously cooled specimens. The continuous cooling transformation diagrams were determined and microstructures of the dilatometric specimens were examined by optical and transmission electron microscopy. The values of the 50% martensite hardness established for the steels containing vanadium were found to be outside the range given by the widely used Hodge and Orehoski relationship. The relevance of the results to the assessment of hardenability by means of the ideal critical diameter concept is discussed.

MST/484  相似文献   

9.
The effects of a homogenisation treatment on precipitation, recrystallisation, grain refinement and texture in an Al–1.2Mn alloy were investigated. Based on hardness and electrical conductivity measurements, a precipitation–recrystallisation diagram was generated, which described the sequence of recrystallisation and precipitation. The results showed that recrystallisation was significantly retarded during the annealing treatment for the cold-rolled alloys with a supersaturated solid solution or with dense pre-existing dispersoids. If precipitation occurred prior to recrystallisation, the precipitates caused a strong resistance to recrystallisation, resulting in a coarse and elongated grain structure with a dominant normal direction-rotated cube texture. In contrast, when recrystallisation was completed before precipitation, recrystallisation was little affected by the precipitates, leading to a fine-grained structure with a weak cube texture.  相似文献   

10.
Abstract

Submerged arc welds of a 22Cr–3Mo–8Ni (wt-%) duplex stainless steel were aged in the temperature range 400–600°C to simulate stress relieving conditions of mild steel. Particular attention was paid to the relationship between toughness and microstructure. It was concluded that sufficient toughness could be obtained on aging in the range 500–550°C provided that the aging time did not exceed 10 h. At temperatures >550°C, rather rapid embrittlement occurred as a result of the precipitation of essentially R phase and to some extent π phase. At ~≤500°C, spinodal decomposition of ferrite caused embrittlement, albeit more slowly than the precipitate induced embrittlement. Precipitation of the Mo rich phases Rand π was found to cause depletion of Mo in solid solution in ferrite. This offers a possible explanation for the decrease in pitting corrosion resistance observed in previous work.

MST/1426  相似文献   

11.
The effect of nickel on the microstructure and mechanical properties of a die-cast Al–Mg–Si–Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Al–Mg–Si–Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100–140](Fe,Mn)[2–7]SiNi[4–9]. With increasing Ni content, the spacing of the α-Al–Mg2Si eutectic phase was enlarged in the Al–Mg–Si–Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.  相似文献   

12.
Al–Bi immiscible alloy is of particular interest as potential self-lubricating wear materials with a homogeneous distribution of minority phase. However, it is difficult to obtain a homogeneous microstructure by conventional casting methods due to liquid phase separation of Al–Bi immiscible alloy. We have developed a new strategy to restrain liquid phase separation and improve the properties of Al–Bi immiscible alloy by in situ phases. The in situ AlB2 phase acts as heterogeneous nucleation site to accelerate the nucleation and slow down the velocity of the Bi-rich droplet, resulting in a significant size reduction and a homogeneous microstructure of Al–Bi immiscible alloy. The self-lubricating wear resistance of Al–Bi immiscible alloy can be further enhanced by in situ Al2Cuphase.  相似文献   

13.
The kinetic theory for the growth of pearlite in binary and ternary steels is implemented to ensure local equilibrium at the transformation front with austenite, while accounting for both boundary and volume diffusion of solutes. Good agreement is on the whole observed with published experimental data, although the reported growth rate at the lowest of temperatures is much smaller than predicted. To investigate this, experiments were conducted to replicate the published data. It is found that the cooperation between cementite and ferrite breaks down at these temperatures, and surface relief experiments are reported to verify that the resulting transformation product is not bainite.  相似文献   

14.
Tungsten Inert Gas (TIG) welding is considered as one of the cleanest welding methods. It is generally adopted for thinner materials with moderate weld joint strengths. Welding of sintered porous materials continues to be a challenge due to the inherent porosity of the parent metals. The present research work attempts to address some of the issues relating to the welding behaviour of sintered and forged Fe–0.3%C–3%Mo low alloy steels under TIG welding. Rectangular strips of size 70 mm × 15 mm × 5 mm, obtained by blending, compacting and sintering of elemental powders of iron, graphite and molybdenum, were upset forged – both hot and cold in order to obtain alloy steel strips of various porosities. Two identical alloy steel strips of equal density were then welded both along longitudinal and transverse directions, by TIG welding, employing filler metal of suitable composition. The welded strips were then subjected to tensile test, hardness test, microstructural and Scanning Electron Microscope (SEM) fractography studies. Cold/hot upsetting of the sintered alloy preforms has led to enhanced density. As a result of improved density, their tensile strength and hardness values were also found to be enhanced. The welded alloy exhibited higher tensile strength compared to the un-welded base metal, due to strengthening by residual stress. Similarly, the strength and hardness of the welded alloy strips were found to be enhanced with increase in density. The tensile strength of welded joint is found to be higher compared to that of the base metal due to alloy metals segregation, rapid cooling and formation of acicular ferrite at the weldment of welded joint. No porosity was observed in the weld metal or Heat Affected Zone (HAZ) of the weld joint. However, the base metal had numerous micro pores, though pore migration towards weldment has not been observed.  相似文献   

15.
Effects of Sn on microstructure and mechanical properties of Mg–5Zn–1Mn alloy subjected to high strain rate rolling (9.1?s-1), 300°C and 80% pass reduction are investigated. With higher Sn content, the dynamic recrystallisation (DRX) grain size gradually decreases due to the stronger pinning of nano-scale precipitates at grain boundaries and the DRX fraction first increases due to the enhanced effect on DRX by decreasing stacking fault energy and then decreases due to more precipitates at grain boundaries. Ultimate tensile strength (UTS) and elongation to rupture (Er) of as-rolled alloys increase and then decrease. Alloy with 0.9 mass% Sn exhibits the highest DRX fraction (95?vol.-%), the finer DRX grain size (1.22?µm), UTS of 358?MPa and Er of 20.4%.  相似文献   

16.
Fatigue strength and life of weldment at high temperatures are important for the materials in power plants. The fatigue crack growth rate is accelerated by oxidation. Similarly, the high-temperature fatigue life is influenced by oxidation. The base metal, the weld metal and the heat-affected zone (HAZ) of the P122 (Cr–Mo steel) weldment were oxidized between 600 °C and 700 °C for up to 500 h in air, and their oxidation behavior was examined. The oxidation resistance increased in the order of HAZ, base metal and weld metal. The scales were mainly Fe2O3. Fatigue tests were performed to measure the fatigue crack growth rate in the range of low stress intensity factor, and the results are discussed from the viewpoint of different microstructures and oxidation.  相似文献   

17.
Abstract

Tensile samples of a C–Mn–Nb–Al steel (BS 4360: 50D grade) have been cast in situ and either directly tested in the temperature range 850–1200°C, or were allowed to cool through the transformation, re–solution treated, and then tested in the same temperature range. The hot ductility of the directly tested cast material was found to be superior to that of the reheated material. Carbon extraction replicas taken close to the fracture surfaces showed large differences in the distribution of sulphide inclusions and NbCN precipitates along the γ boundaries. The directly cast material had sulphide inclusions and NbCN precipitates present in the form of coarse particles situated close to the interdendritic boundaries. A significant proportion of these coarse sulphide inclusions and NbCN eutectics, produced during solidification, redissolved on reheating at 1330°C, and subsequently precipitated in a much finer form at the γ grain boundaries, reducing hot ductility. It appears likely that the very marked segregation which occurred during solidification enhanced the interdendritic regions with sulphur to such an extent that the sulphideformed was (Mn, Fe)S, which in gradually changing to the equilibrium precipitate, depleted the surrounding matrix of manganese. The low manganese level accompanying these inclusions allowed a greater degree of solution of the sulphides to occur on reheating and accounted for the subsequent fine precipitation at the boundaries.

MST/361  相似文献   

18.
The Fe–25Mn–3Si–3Al TWIP steel was microalloyed by niobium in this paper, and the appropriate heat treatment and cold rolling processes were drafted in order to improve the poor yield strength of the steel. The results show that the yield strength of the steel increases from 320 MPa to 445 MPa, and the tensile strength increases from 680 MPa to 795 MPa, but the uniform elongation decreases from 65% to 55%. Nb addition can strongly hinder the growth of recrystallized grains, moreover Nb atoms react with C atoms to form nanoscale NbC precipitations, and these precipitations can block the dislocation motion, and then the yield strength and initial work hardening ability of Fe–25Mn–3Si–3Al steel is clearly improved. Furthermore, the strain-induced twinning is still a major deformation mechanism for the Nb-microalloying TWIP steel, and the twinning induced plasticity (TWIP) effect ensures a satisfactory ductility for the steel. Finally, the modified TWIP steel obtains a better match between the strength and plasticity by the joint action of precipitation strengthening and TWIP effect.  相似文献   

19.
Abstract

A large scale billet with diameter of 58·5 mm of an as cast Al–Mg–Mn alloy was processed by equal channel angular pressing (ECAP) at 350°C up to six passes. A significant refinement of the grains was observed after six pressings to ~2 μm. And the selected area electron diffraction (SAED) pattern showed that almost all of the grains were separated by boundaries with high angles of misorientation. A banded substructure was not observed during the hot ECAP, and a reasonably equiaxed structure was obtained just after one single pressing. Both the strength and the elongation increased abruptly in a single passage through the die, but thereafter, the increase was more gradual and exhibited a saturation effect after the fourth pressing. The good combination of strength and ductility of the Al–Mg–Mn alloy attained by the hot ECAP appeared to be attractive properties for industrial applications. Moreover, hot ECAP could possibly be used as an alternative step to hot extrusion or hot rolling in industrial processing, to break down an initial coarse as cast structure in a quite large scale billet.  相似文献   

20.
The present work aims at studying structure–property correlations in a weld overlay clad high strength low alloy steel with austenitic stainless steel of American Institute for Steel and Iron (AISI) 347 grade. Optical microscopy studies revealed that the interface between the two steels was nearly flat. The base plate had ferrite plus bainite microstructure adjacent to the interface and tempered bainite/martensite structure away from the interface. Grain coarsening and decarburization were observed near the interface. The stainless steel exhibited austenite dendritic structure. Tensile strength, notch-tensile strength and charpy impact energy of the base plate were found to be higher than those for the interface. The microhardness was observed to be maximum on the clad layer near interface. The shear bond strength of the weld overlay-interface was higher than the shear strength of the base plate. Fractography was carried out using scanning electron microscope on tensile, notch-tensile and shear bond test specimens of the interface as well as shear test specimens of the base plate. It revealed the presence of predominantly dimpled rupture. Charpy impact specimens of the interface failed in mixed mode while impact specimens of the base plate failed in ductile mode. Electron probe microanalysis across the bond interface indicated linear change in concentrations of Cr, Ni, Mn, Cu, Mo, Nb and Si between the levels appropriate to the clad layer and base metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号