首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thixoforging is a type of semi-solid metal processing at high solid fraction (0.7<?s<1), which involves the processing of alloys in the semi-solid state. Tooling has to be adapted to this particular process to benefit shear thinning and thixotropic behaviour of such semi-solid material. Tooling parameters, such as the forming speed and tool temperature, have to be accurately controlled because of their influence on thermal exchanges between material flow and tool. These thermal exchanges influence the high-cracking tendency and the rheology of the semi-solid material during forming, which affects parts properties and therefore their quality. Extrusion tests show how thermal exchanges influence quality of thixoforged parts made of 7075 aluminium alloys at high solid fraction by modifying process parameters like forming speed, tool temperature and tool thermal protector. Thus an optimum in terms of thermal exchanges has to be found between surface quality and mechanical properties of the part. A direct application is the evaluation of surface quality of thixoforged thin wall parts made of 7075 aluminium alloy.  相似文献   

2.
Relationship between the processing parameters and the properties of semi-solid processed Al alloys were studied and microstructure and mechanical properties of semi-solid processed Al parts for automobile application as a function of processing parameters were compared with those of die-cast parts and forged parts. In addition, the locations for the gate during the semi-solid processing were varied to elucidate the distribution of micro-porosities and resulting mechanical properties and the T6 heat treatment on the semi-solid processed part was performed so that the effect of heat treatment on the improvement of mechanical properties could be evaluated in terms of tensile strength, wear properties, etc. Microstructure of semi-solid processed Al part did not show any noticeable micro pores as compared to the microstructure of die-cast part. T6 heat treatment on A319 alloys has greatly improved the hardness as well as the wear resistance. Semi-solid processed A319 part showed slightly higher hardness val  相似文献   

3.
利用ProCAST软件对A356合金半固态压铸件下壳体进行耦合数值模拟。结果表明,在模具温度为220℃,充型温度为590℃、压射速度为5m/s时,半固态浆料充型平稳,温度场分布均匀,减少了缩孔、缩松等缺陷,为A356合金半固态压铸成形工艺的制定和优化提供了依据。采用此工艺参数,生产出合格铸件。在该件上所需部位可以钻螺纹孔,与其他零件装配使用。通过试验,验证了数值模拟优化工艺参数的合理性。  相似文献   

4.
以水泵盖为目标零件,在自行建立的半固态触变成形试验线上使用A357合金和新开发的半固态专用铝合金Al-6Si-2Mg进行了半固态触变压铸试验研究.对这两种合金在半固态坯料制备、二次加热及半固态压铸中的显微组织及工艺性进行了比较.结果表明,Al-6Si-2Mg合金在触变成形过程中均表现出更好的工艺可控性,其半固态压铸件热处理后的性能为σb=335MPa,σs=305MPa,δ5=3%,强度高于A357,伸长率与铸态A357合金相当.试验最终获得了充型完好、性能优异、组织均匀的半固态压铸件.  相似文献   

5.
镁合金半固态流变压铸充型流动过程分析   总被引:1,自引:1,他引:1  
翁文凭  吴树森  肖泽辉  万里  毛有武  罗吉荣 《铸造》2004,53(11):894-897
通过压铸实验分析了镁合金半固态流变压铸、液态压铸充型流动过程.结果表明,镁合金半固态流变压铸和液态压铸充型流动过程相似;相同充型条件下,半固态流变压铸卷气现象较少,压铸件质量优于液态压铸.同时,内浇道充型速度和内浇道尺寸对压铸件充填过程影响很大,合理的设置可以减少涡流和卷气,得到高质量的压铸件.  相似文献   

6.
Abstract

This work investigates the formation of as cast defects in knit line regions and their effects on local mechanical properties in a thin walled high pressure die cast AM60B magnesium alloy component. The defect distributions and the tensile and bending properties of specimens cut from knit line and other regions are compared. Numerical simulations of the mould filling process, computed X-ray tomography experiments and reports from the literature are used to formulate an initial explanation for the occurrence of metal front dispersion in knit line regions. This is an initial study for a future project investigating knit line formation and process–structure correlations in cast magnesium alloys.  相似文献   

7.
半固态金属触变塑性成形上限法   总被引:1,自引:0,他引:1  
在高固相率时,半固态金属的力学模型可简化为连续多孔体力学模型。针对半固态金属触变塑性成形的特点,本文发展了上限法理论在半固态金属触变塑性成形分析中的应用。提出速度间断值不仅要包括切向分量,还要包括法向分量。速度间断的法向分量是由金属通过速度不连续面时,材料固相率的变化而引起的。由此建立了半固态金属触变塑性成形的上限分析模型和理论方法,导出了上限功率的计算公式。为在实际触变塑性成形工艺分析中的进一步应用奠定了理论基础。  相似文献   

8.
通过对半固态合金流变充型过程的物理分析,结合半固态合金包含圣维南体和假塑性体的流变特性,根据充型驱动力大于或等于充型阻力,阻流通道内不可流动层厚度小于阻流截面最小厚度的1/2这两个充型临界条件,运用不可压缩粘性流体流动理论,建立半固态合金充满型腔获得完整零件的两个临界条件的数学表达式。为了验证其准确性,对钩舌、轴箱体零件进行了流变成形实验,实验结果证实该临界条件数学表达式的正确性。该式包含设备参数、工艺参数、材料参数和模具参数,可用来指导半固态流变成形工艺设计、设备选型,并能进行缺陷预测和充型过程控制。  相似文献   

9.
Abstract

Aeration filling is a new flask (or moulding chamber) filling method, which has been developed from the shooting/blowing process. As a sand filling stage, aeration filling determines the ultimate quality of mould in a sense, such as integrality and uniformity. If the moulding sand can be filled in every part of the mould cavity, an accurate shape would be replicated after the finial compaction stage, otherwise the mould may have weak regions. This paper focuses on the study of the sand filling process and its influential factors. From experiments and comparison with conventional shooting (or blowing) process, it can be seen that this method has the advantages of better sand filling effect and less energy consumption.  相似文献   

10.
The 6061 semi-solid aluminium alloy feedstocks prepared by near-liquidus casting were compressed in semi-solid state by means of Gleeble-3500 thermal-mechanical simulator. The relationship between the true stress and the true strain at different temperatures and strain rates was studied with the deformation degree of 70%. The microstructures during the deformation process were characterized. The deformation mechanism and thixo-forming properties of the semi-solid alloys were analyzed. The results show that the homogeneous and non-dendrite microstructures of semi-solid 6061Al alloy manufactured by near-liquidus casting technology could be transformed into semi-solid state with the microstructure suitable for thixo-forming which are composed of near-spherical grains and liquid phase with eutectic composition through reheating process. The deformation temperature and strain rate affect the peak stress significantly rather than steady flow stress. The resistance to deformation in semi-solid state decreases with the increase of the deformation temperature and decrease of the strain rate. At steady thixotropic deformation stage, the thixotropic property is uniform, and the main deformation mechanism is the rotating or sliding between the solid particles and the plastic deformation of the solid particles.  相似文献   

11.
镁合金半固态流变压铸型腔流动过程数值模拟的研究   总被引:1,自引:1,他引:1  
翁文凭  万里  吴树森  罗吉荣 《铸造技术》2005,26(8):739-741,744
利用数值模拟技术,模拟了镁合金液态压铸和半固态流变压铸成形充型流动过程.结果表明:半固态流变压铸成形在不同的内浇口尺寸与位置条件下都可以获得平稳的充型流动场,其工艺参数设计灵活;同等条件下,半固态流变压铸成形的型腔充填过程平稳,成形铸件的质量优于液态压铸成形.模拟结果与实验结果比较分析,两者的流动特征基本吻合.  相似文献   

12.
Abstract

Flow and consolidation of the material under the tool shoulder and subsequent nugget formation are among the least understood aspects of friction stir welding and processing (FSW/P). Welding parameters and tool profile impact the process forces acting on the tool. This work is an observational study of the process forces associated with bead on plate runs on two aluminium alloys, 6061 and F357. Polar plots of the resultant forces acting on the tool spindle are analysed and correlated to the process parameters. The dependence of the nugget's width with various heat indices is evaluated.  相似文献   

13.
半固态A356合金流变充型的极限长度   总被引:1,自引:0,他引:1  
通过对半固态合金流变充型机理分析,推导出可以定量计算半固态A356铝合金在圆管内流变充型极限长度的数学模型,该模型包括了工艺参数和半固态A356合金的自身特性。采用间接挤压铸造阿基米德螺旋线试样的方法对该数学模型进行了实验验证,实验结果表明:理论计算值与实验测定值之间的最大偏差小于8%;该数学模型可以定量分析和估算工艺因素对充型能力的影响,并可预测充型极限长度,这对半固态合金流变成形工艺设计和模具设计都有参考价值。实验和理论计算还表明,充型压力和充型速度是影响半固态合金充型能力的两个主要因素,提高充型压力、一定充型压力下适当减小充型速度都可以提高充型能力。  相似文献   

14.
利用半固态流变挤压铸造技术代替传统铸造来生产汽车轮毂。基于有限元软件AnyCasting和carreau表观粘度模型,对铝合金轮毂的半固态流变挤压铸造成形过程进行了数值模拟,研究了压射速度、浇注温度和模具预热温度3个主要工艺参数对半固态浆料充型和凝固过程的影响规律,并采用正交试验设计获取了最佳的工艺参数。结果表明,最佳的工艺参数组合为压射速度0.07 m/s、浇注温度595℃和模具预热温度225℃,同时得出半固态浆料的浇注温度对铸件缺陷的影响最大,压射速度其次,模具预热温度最小。  相似文献   

15.
The effects of the viscosity, gate speed, and gate geometry on the flow behaviors of Al alloys in molten and semi-solid states were studied by direct observations of the flow patterns during die filling. Two different fluids, thixotropic fluid (semi-solid Al alloy) and Newtonian fluid (molten Al alloy), were chosen as the model fluids for monitoring the differences in flow patterns during die filling. High-speed photography was employed to record the real time flow patterns. Qualitative assessments on the critical gate speed were made based on the experimental results. The experimental results were also compared with results predicted based on the Reynolds number. Although the critical gate speed varies depending on the gate geometry, it is less than ∼2.5 m/sec in semi-solid forming, while it ranges from 0.3∼0.5 m/sec in squeeze casting.  相似文献   

16.
Alloys with an equiaxed microstructure exhibit significantly lower flow resistance in the semisolid state than alloys with a dendritic microstructure. Their thixotropic behavior (solidlike in the unperturbed state and liquidlike during shearing) has been the basis for a thixoforming process. It is accepted today that thixoforming is a new net-shaped manufacturing technology in which the billet is heated to the semisolid state with coexisting solid-liquid phases. The thixoforming process has some industrial advantages, such as the successful fabrication of high-quality components with fewer inner defects, suitable for less machining, high productivity comparable to high-pressure die casting, and being an energy-saving system without the conventional melting process. It consists of inductive coil design, a billet reheating process, billet handling, filling into the die cavity, and solidification of the thixoformed part. This work presents an overview of all the detailed stages in the thixoforming process to manufacture the net-shaped product with good mechanical properties. An air compressor part with high strength has been fabricated by the thixoforming process.  相似文献   

17.
铝硅合金凝固过程中的力学行为和热裂倾向性   总被引:1,自引:1,他引:0  
党惊知  程军 《热加工工艺》1993,(3):16-17,20
利用自制的准固态力学性能测试装置,对铝硅合金的准固态力学性能进行了较为系统的测试,得出了反映不同含硅量铝硅合金的准固态力学行为参数(强度、断裂应变、准固态区间等),并分析了这些参数与热裂倾向性的关系。  相似文献   

18.
Abstract

This paper presents an advanced control system in a tilting ladle type automatic pouring system. To improve the productivity and save energy, in the pouring process, it is important that the mould be filled precisely and quickly with molten metal. A sequence control employing prediction of filling weight is proposed in this paper. In the proposed control system, the sequence parameter varies depending on the predicted filling weight during the back tilting. The proposed control system has an advantage in that it can be performed by common control equipment such as a programmable logical controller. The effectiveness of the proposed filling weight control system is demonstrated through the experiments using water.  相似文献   

19.
Abstract

Tilt pour gravity casting technology is increasingly being used for shape casting various components with aluminium alloys. The ASTM B108/B108M-08 standard exists for a metal mould to evaluate the mechanical properties of castings made by gravity permanent mould process, yet there is no standard mould for the tilt pour process. We have designed, developed, tested and validated a standard mould to cast tensile and fatigue test bars in a tilt pour casting process. The new mould has demonstrated abilities to cast sound castings of A356·2 aluminium alloy, and the uniaxial tensile properties were superior to those obtained from conventional direct pour gravity casting process.  相似文献   

20.
Semi-solid powder rolling (SSPR) combines semi-solid rolling with powder rolling to prepare high-performance metallic strips. Semi-solid powders were prepared under an inert atmosphere and subsequently rolled by a powder rolling machine. Conductive cooling between the pre-heated rollers and semi-solid powders results in a rapid solidification effect that is able to process alloys with a broad freezing range. The liquid in the semi-solid powders plays an important role in the microstructure evolution, which can improve the strength of strips. The 7050 aluminum alloy strips were obtained and used to evaluate the processing parameters and strip qualities for strips up to 100 mm wide and 1.5–2 mm thick. The process of semi-solid powder rolling was described and microstructure evolution during rolling and post-treatment was analyzed. The combination mechanism of semi-solid powders during rolling was also discussed. The results show that the best liquid fraction to prepare a strip ranges from 45 to 65%. Flowing and filling of liquid (>10%), densification by rolling and recrystallization (<10%) are the three combination mechanisms of the semi-solid powders during rolling. In addition, semi-solid powder rolled strips can be processed subsequently by hot rolling with the improved micro-hardness and relative density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号