首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

Carbon partitioning in untransformed austenite during bainite transformation has been studied using high speed dilatometry. It was found that in specimens partially transformed to bainite, during subsequent quenching to ambient temperature two martensite start temperatures M s can be registered. Because M s depends directly on a carbon content in austenite, the obtained results may indicate that the carbon concentration trapped in films of austenite between parallel subunits of bainitic ferrite is much larger than in the blocks of austenite. It would indicate the necessity of a substantial modification of bainite and martensite regions on the time–temperature–transformation (continuous cooling) diagrams.  相似文献   

2.
A new empirical formula for the bainite upper temperature limit of steel   总被引:2,自引:0,他引:2  
The definition of the practical upper temperature limit of the bainite reaction in steels is discussed. Because the theoretical upper temperature limit of bainite reaction, B 0, can neither be obtained directly from experimental measurements, nor from calculations, then, different models related to the practical upper temperature limit of bainite reaction, B S, are reviewed and analyzed first in order to define the B 0 temperature. A new physical significance of the B S and B 0 temperatures in steels is proposed and analyzed. It is found that the B 0 temperature of the bainite reaction in steels can be defined by the point of intersection between the thermodynamic equilibrium curve for the austeniteferrite transformation by coherent growth (curve Z ) and the extrapolated thermodynamic equilibrium curve for the austenitecementite transformation (curve ES in the Fe-C phase diagram). The B S temperature for the bainite reaction is about 50–55 °C lower than the B 0 temperature in steels. Using this method, the B 0 and B S temperatures for plain carbon steels were found to be 680 °C and 630 °C, respectively. The bainite reaction can only be observed below 500 °C because it is obscured by the pearlite reaction which occurs prior to the bainite reaction in plain carbon steels. A new formula, B S(°C) =, 630-45Mn-40V-35Si-30Cr-25Mo-20Ni-15W, is proposed to predict the B S temperature of steel. The effect of steel composition on the B S temperature is discussed. It is shown that B S is mainly affected by alloying elements other than carbon, which had been found in previous investigations. The new formula gives a better agreement with experimental results than for 3 other empirical formulae when data from 82 low alloy steels from were examined. For more than 70% of these low alloy steels, the B S temperatures can be predicted by this new formula within ±25°C. It is believed that the new equation will have more extensive applicability than existing equations since it is based on data for a wide range of steel compositions (7 alloying elements).  相似文献   

3.
The purpose of this study is to investigate and understand the phase transformations during the decomposition of austenite, which occurs during isothermal treatments below the martensite start temperature (Ms) in a low-carbon steel. Isothermal holding treatments after rapid cooling to various temperatures (forming a controlled volume fraction of initial martensite) were carried out in a dilatometer. Results obtained by dilatometry, microstructural characterization and hardness were analyzed. This combination of results shows that the microstructures formed below the Ms temperature are mainly bainitic, mixed with tempered martensite. The kinetics of isothermal bainite formation was described by a nucleation-based transformation model. The complex competition and interactions between their transformation mechanisms during the isothermal holding at different temperature regimes are discussed.  相似文献   

4.
Abstract

The phenomenological theory of martensitic transformation was applied to a tension induced martensitic transformation in an AISI 304 austenitic stainless steel in order to estimate the transformation texture. Input data were obtained from the published literature. Calculated pole figures were constructed assuming a variant selection process based on Patel and Cohen’s theory, which emphasises that a mechanical component of free energy is the driving force for martensitic transformation at temperatures above martensite start Ms. The results showed a remarkably good match between the calculated and published measured data.  相似文献   

5.
Abstract

The effect of austenite grain size on isothermal bainite transformation in a low carbon microalloyed steel was studied by means of optical microscopy, SEM and TEM. Two widely varying austenite grain sizes, a fine average grain size (~20 μm) and a coarse average grain size (~260 μm), were obtained by different maximum heating temperatures. The results showed that the morphology of isothermal microstructure changes from bainite without carbide precipitation to bainitic ferrite with a decrease in holding temperature. Coarse austenite grain can retard the kinetics of bainite transformation and increase the incubation time of bainite transformation by reducing the number of nucleation site, but it does not influence the nose temperature of the C curve of bainite start transformation, which is ~534°C.  相似文献   

6.
Based on the phase transformation theories, especially the T0 concept of bainite transformation, alloy optimisation of bainitic steel with carbides has been carried out aiming at the produce of plastic mould with large cross-section. The effect of manganese and silicon on proeutectoid ferrite and bainite transformation is explored by dilatometric analysis, XRD and different microscopy techniques. The results show that after the alloy optimisation, the transformation of proeutectoid ferrite is suppressed and when the cooling rate is lower than 0·1°C?s??1, the new lower bainite transformation appears by decreasing carbon capacity of austenite and promoting carbide precipitation. Industrial production proves that the optimised alloy SDP1 can meet the demand for the plastic mould with the thickness of 1050?mm.  相似文献   

7.
Theoretical analysis shows that the fraction of pearlite formed from nucleation is additive and that from growth is not. A modified additivity model is established with two continuous cooling experiments. Calculations of Ae3 temperature for proeutectoid ferrite formation under stress and nucleation rate as well as incubation period of ferrite or pearlite transformation under stress are successfully made. Kinetics equations for ferrite and pearlite transformations under stress are expressed from modification of J–M–A equation with addition of a stress item. The acceleration effect of stress on bainite formation is mainly attributed to the increase of diffusivity of solute atoms and even iron. By consideration of the grain size effect, Patel and Cohen’s equation expressing the effect of stress on Ms is modified. Calculations of Ms for fcc  bcc(bct) and fcc  hcp under stress are introduced. An equation showing the relationship between strain and nucleation of martensite which can well explain the morphology of martensite formed under stress is mentioned. Appearance and mechanism of mechanical stabilization of austenite in martensitic transformation, i.e., the lowering of Ms, resulted from the work hardening of austenite, are different from retardation of bainite formation under stress, i.e., after Bs raising, occurring the retardation of bainite growth resulted from hindrance by defects.  相似文献   

8.
Accurate knowledge of critical transformation temperatures in steels such as the austenitizing temperature, T γ , isothermal bainite and martensite start temperatures, B S and M S , is of unquestionable significance from an industrial and research point of view. Therefore a significant amount of work has been devoted not only in understanding the physical mechanism lying beneath those transformations, but also obtaining quantitatively accurate models. Nowadays, with modern computing systems, more rigorous and complex data analysis methods can be applied whenever required. Thus, Artificial Neural Network (ANN) analysis becomes a very attractive alternative, for being easily distributed, self-sufficient and for its ability of accompanying its predictions by an indication of their reliability.  相似文献   

9.
Microstructural characterization of the bainite in a ferritic–pearlitic forged crankshaft was carefully investigated. A Gleeble thermo‐mechanical simulator as well as a high resolution dilatometer were also used to analyze the effect of cooling rate on the bainite formation and the bainite transformation mechanism in steels with different austenite grain sizes. Results show that the fine structure of the bainite mainly consists of bainitic ferrite and martensite. No segregations are found where bainite forms. Bainite tends to form in the slower cooled inner part of the crankshaft with an austenite grain size exceeding 100 μm. The formation of bainite is mainly affected by the austenite grain size as well as the cooling rate in the crankshaft studied. As the austenite grain size increases, ferrite start, pearlite finish and bainite finish temperatures are decreased. More bainite forms when bainite finish temperature decreases. The critical cooling rate of bainite transformation is increased from 0.34 °C?s‐1 to 0.44 °C?s‐1, if the maximum austenite grain size is refined from 216 μm to 100 μm. For ferritic–pearlitic crankshafts, or other bulky products, the elimination of bainite can be achieved through austenite grain refinement.  相似文献   

10.
Abstract

Changes in martensitic transformation temperatures during thermal cycling in Ti–Ni–Cu shape memory alloys have been investigated by means of electrical resistivity measurements, thermal cycling tests under constant load and transmission electron microscopy. During thermal cycling without applied stress, the B2→B19′ transformation temperature M s decreased, while the B2→B19 transformation start temperature M s′ kept almost constant. During thermal cycling with applied stress, in solution treated Ti–45Ni–5Cu alloy, changes in M s depended on the amount of applied stress. That is, M s decreased when the applied stress was 39.2 MPa, while its value kept almost constant when a stress of 117.2 MPa was applied. It was also found that M s′ increased during thermal cycling in the solution treated Ti–35Ni–15Cu and Ti–30Ni–20Cu alloys, irrespective of the amount of applied stress. All changes in M s and M s′ during thermal cycling with applied stress in Ti–Ni–Cu alloys were explained well by a combination of the thermal cycling effect and the structural refinement effect.  相似文献   

11.
Abstract

Continuous and discontinuous cooling tests were performed using a quench deformation dilatometer to develop a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in low carbon TRIP (transformation induced plasticity) steels as a function of thermomechanical processing and composition. Deformation in the unrecrystallised austenite region refined the ferrite grain size and increased the ferrite and bainite transformation temperatures for cooling rates from 10 to 90 K s-1. The influence of niobium on the transformation kinetics was also investigated. Niobium increases the ferrite start transformation temperature, refines the ferrite microstructure, and stimulates the formation of acicular ferrite. The effect of the bainite isothermal transformation temperature on the final microstructure of steels with and without a small addition of niobium was studied. Niobium promotes the formation of stable retained austenite, which influences the mechanical properties of TRIP steels. The optimum mechanical properties were obtained after isothermal holding at 400°C in the niobium steel containing the maximum volume fraction of retained austenite with acicular ferrite as the predominant second phase.  相似文献   

12.
The modified heat treatment, which produces a mixed structure of martensite and lower bainite through short-term isothermal transformation at just above the martensitic transformation temperature,M s temperature, followed by oil quenching (after conventional austenitization), has been applied to three high-carbon low-alloy steels with different levels of nickel and chromium contents at similar molybdenum levels, in which carbon was allowed to replace relatively expensive additions of nickel and chromium, for their ultra-high strength application. The significant conclusions are as follows: an ultra-high strength steel of 1900 M Pa yieldstress grade with a high toughness level can be obtained when about 60 vol % lower bainite is associated with 473 K tempered martensite of 0.60% C-1.80% Ni-0.80% Cr-0.25% Mo steel. If approximately 25 vol % lower bainite appears in 673 K tempered martensite of the steel, a 1700 M Pa yield-stress grade steel with high toughness and moderate ductility levels can be attained. However, alloying nickel is essential to some extent for development of the mechanical properties with the modified heat treatment suggested in the present work.  相似文献   

13.
Abstract

The transformation products in advanced high strength steels have been studied during the isothermal decomposition of austenite, subsequent to initial martensite formation. Rapid cooling to various temperatures below martensite start was carried out in a dilatometer with the intention to form controlled volume fractions of initial martensite and austenite, followed by isothermal holding. The transformation kinetics was monitored by means of dilatometry and microstructural characterisation by scanning electron microscopy, electron backscatter diffraction and X-ray diffraction. Hardness measurements of the resulting microstructures were analysed. The results revealed that the microstructures formed below MS are mainly composed of different fractions of tempered martensite, isothermal bainite with carbide precipitation and retained austenite.  相似文献   

14.
In order to avoid the appearance of soft particles composed of ferrite or pearlite in the actual production of new bainitic steel, the phase transformation behaviour and bainite formation kinetics were investigated by DIL805A dilatometer, optical microscopy, scanning electron microscopy and Vickers-durometer. The results show that the soft particles cannot appear when the cooling rate exceeds 0.025?K?s?1, and this condition can be ensured by direct spray cooling in production. The local activation energy decreases with increasing transformed bainite volume fraction (fb), and the average energy is about 136.7?kJ?mol?1. The local Avrami exponent mainly lies between 0.5 and 3 in a wide fb range, indicating that the dominating mechanism of bainite formation is two-dimensional and one-dimensional growth.  相似文献   

15.
Abstract

This paper concerns acoustic emission (AE) measurements during continuous cooling of steel C45 using a Gleeble 1500 thermomechanical simulator. After austenising at a certain temperature, the studied specimen was cooled down and the root mean square (RMS) value of the continuous AE signal was measured. During cooling two distinct peaks in the RMS data were observed at temperatures of 200-300°C and 500-600°C, which have been attributed to martensite and bainite formation respectively. The observed bainite peak strongly indicated that the mechanism of bainite growth is displacive. The AE monitoring of bainite and martensite formation was supported by dilatation measurements, which were performed simultaneously. The effect of the austenite grain size on the evolution of the bainitic and martensitic transformation was studied by varying the austenising temperature T a. It was found that upon lowering T a, i.e. with decreasing austenite grain size, the bainite peak increases while the martensite peak decreases.  相似文献   

16.
Zhang  Min  Lu  Hai-Gang  Li  Si-Dian 《Nano Research》2021,14(12):4719-4724

Boron allotropes are known to be predominately constructed by icosahedral B12 cages, while icosahedral-B12 stuffing proves to effectively improve the stability of fullerene-like boron nanoclusters in the size range between B98–B102. However, the thermodynamically most stable core-shell borospherenes with a B12 icosahedron at the center still remains unknown. Based on the structural motif of D5h C70 and extensive first-principles theory calculations, we predict herein the high-symmetry C5v B111+ (3) which satisfies the Wade’s n+1 and n+2 skeletal electron counting rules exactly and the approximately electron sufficient Cs B111 (4), Cs B112 (5), Cs B113 (6), and Cs B114 (7) which are the most stable neutral core-shell borospherenes with a B12 icosahedron at the center reported to date in the size range between B68–B130, with Cs B112 (5) being the thermodynamically most favorite species in the series. Detailed orbital and bonding analyses indicate that these spherically aromatic species all contain a negatively charged icosahedral B122− core at the center which exhibits typical superatomic behaviors in the electronic configuration of 1S21P61D101F8, with its dangling valences saturated by twelve radial B-B 2c-2e σ bonds between the B12 inner core and the B70 outer shell. The infrared (IR) and Raman spectra of the concerned species are computationally simulated to facilitate their future characterizations.

  相似文献   

17.
The stress induced tetragonal to monoclinic ZrO2 martensitic transformation contribution to fracture toughness is described in terms of the required external strain energy and the thermo-dynamic stability of the constrained tetragonal phase. The strain energy, derived from an externally applied stress acting on the main crack, required to achieve transformation toughening is shown to be a function of the term (T - M s) whereT is the test temperature andM s is the martensite start temperature for the case ofT > M s. Thus for a givenT (T > M s), the transformation toughening component increases asM s approachesT and for a fixedM s, the toughness decreases asT increases. Experimental data for partially stabilized zirconia ceramics confirm these results and show that increasing tetragonal precipitate size is the primary feature which affects an increase inM s. In the case ofT M s, autotransformation occurs, resulting in decreasing toughness with decrease inT due to a continuous loss in the tetragonal phase content. A temperature region is thus obtained over which transformation toughening exhibits a maximum in its contribution. The temperatures over which this occurs then is shown to be dependent on theM s temperature of the material.  相似文献   

18.
Abstract

The impact of austenite deformation in the intercritical range on the rate of transformation in continuous cooling to ferrite, pearlite, bainite or martensite has been studied. The austenite associated with the rolled ferrite is much higher in carbon content, which does not influence the pearlite transformation but retards bainite and martensite. Furthermore, in comparison with rolling of stable austenite the increased strain hardening of the intercritically cooled austenite accelerates the formation of ferrite and pearlite (+ 10–30°C) and refines them but retards the bainite and martensite transformations (?20–40°C). At the intermediate cooling rate near 16 K s?1, these several influences combined with near doubling of the ferrite production give rise to the suppression of bainite formation and to maximum increased delay of martensite start.  相似文献   

19.
Abstract

An analytical evaluation of transition temperature from upper to lower bainite in Fe – 0·38C – 0·93Cr (wt-%) steel was carried out. Calculations were based on the model constructed by Takahashi and Bhadeshia, which involves a comparison between the time tθ needed to precipitate cementite within the bainitic ferrite plates with the time tθ required to decarburise supersaturated ferrite plates. It was found that the distribution of lath widths, shown by histograms, of the bainitic ferrite varies with isothermal transformation temperatures and holding times. The transition between upper and lower bainite is found to occur over a narrow range of temperatures (350 – 410°C) and depends on the thickness of bainitic ferrite laths and the volume fraction of precipitated cementite. On comparing t d and tθ it was found that a transition temperature from upper to lower bainite reaction L S of about 350°C could be predicted if the thickness of bainitic ferrite laths is set as w o = 0·1 μm and the volume fraction of cementite set as ξ = 0·01. Calculated differences in the relative behaviour of t d and tθ revealed the occurrence of upper and lower bainite in steel Fe – 0·38C – 0·93Cr consistent with the results of transmission electron microscopy investigation.  相似文献   

20.
We have investigated athermal and isothermal martensitic transformations (typical displacive transformations) in Fe–Ni and Fe–Ni–Cr alloys under pulsed and static magnetic fields and hydrostatic pressures in order to understand the time-dependent nature of martensitic transformation, that is, the kinetics of martensitic transformation. Also, we have calculated electronic structures of B2 and ζ′2 phases in AuCd by FLAPW and/or LAPW methods in order to understand the origin of B2–ζ′2 transformation. The following results were obtained. (i) The two transformation processes are closely related to each other, that is, the athermal process changes to the isothermal process under a hydrostatic pressure and the isothermal process changes to the athermal one under a magnetic field. (ii) These findings of (i) can be explained by the phenomenological theory, which gives a unified explanation for the two transformation processes previously proposed by our group. (iii) The calculation of the generalized susceptibility, x(q), for the B2 phase of AuCd shows that there exists a nesting vector of near 1/3<110>2Π/a as in the B2 phase of TiNi calculated previously. The density of states at the Fermi energy of the ζ′2 phase is lower than that of the B2 phase, which is similar to the case of B2–R transformation in TiNi previously calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号