首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
铜中间层钛-钢扩散复合界面组织与性能   总被引:1,自引:0,他引:1  
利用真空扩散焊方法制备了铜中间层钛-钢焊接接头,并采用OM、SEM、EDS、显微硬度和拉伸试验方法,研究了铜中间层钛-钢扩散复合界面组织和性能。结果表明,Fe、Ti原子在界面处发生了互扩散,钛侧形成α-βTi+αTi或βTi+α-βTi+αTi组织,钢侧发生脱碳并形成柱状晶组织;拉伸强度随扩散温度升高呈现先增加后减小的趋势,950℃、30 min扩散试样拉伸强度最高,达到262 MPa;拉伸断口具有塑性断裂区与脆性断裂区特征,并在断口上检测出TiC相。  相似文献   

2.
马氏体/贝氏体耐热钢焊接接头的界面蠕变损伤行为   总被引:2,自引:0,他引:2  
张建强  张国栋  何洁  章应霖  张富巨 《金属学报》2007,43(12):1275-1281
采用脉冲氩弧焊接工艺、高温加速模拟、高温持久实验研究了不同焊缝蠕变强度匹配条件下马氏体耐热钢9Cr1MoVNbN与贝氏体耐热钢12Cr2MoWVTiB异种钢焊接接头的高温强度、界面蠕变损伤及破坏特征.研究结果表明,焊前523 K预热、焊后1023 K×1 h回火条件下,接头的力学性能优异.加速模拟运行500,1000和1500 h后低匹配焊接接头的界面蠕变损伤最严重,发生了界面蠕变断裂,早期失效倾向较大;中匹配接头的蠕变损伤最小,仅发现个别孤立蠕变孔洞,早期失效倾向最小,中匹配接头在923 K下的持久强度(σ105)与低匹配接头比较接近;高匹配接头在923 K下的持久强度(σ105)最低,蠕变孔洞几乎连成裂纹,蠕变损伤和早期失效较大.因此,对于上述异种钢焊接接头采用中匹配焊缝较为合理.  相似文献   

3.
The J integral parameter and its application feasibility in welded joints with different weldmatchings in yield strength (overmatching weld and undermatching weld), different material constitutive laws (material with a Ludes yield plateau and power hardening) and under different fracture types (ligament yielding fracture and general yielding fracture) are investigated. First the condition of J integral path independent has been studied based upon finite element analysis by using ADINA procedure on welded joints. It was shown that the J integral is path dependent for the cases studied in this paper. Then experiments were carried out to study availability of J integral as a plastic singularity parameter at the tip of the notch in welded joints. The results show that J dominance in most cases studied is not validated in v and u displacement fields. From both considerations mentioned above it can be concluded that J-integral as controlling parameter used to estimate the safety of welded structures is not alw  相似文献   

4.
Mixed Al–Si, Al–Cu and Al–Si–SiC powders were used as interlayers to reactive diffusion bond SiCp/6063 MMC. The microstructure and the effects of bonding parameters on the shear strength of SiCp/6063 MMC joints were investigated. The results show that SiCp/6063 MMC joints bonded by using the interlayers of mixed Al–Si, Al–Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and the interlayers during bonding leads to the hypoeutectic microstructure of the joining layers. Using mixed Al–Si–SiC powder as an interlayer, SiCp/6063 MMC can be reactive diffusion bonded by a composite joint. Because of the SiC segregation, however, there are a number of porous zones in the joining layer. This is responsible for the low shear strength of the joints, even lower than those reactive diffusion bonded by using the interlayers of mixed Al–Si and Al–Cu powders. Ti added in the interlayer obviously improves the joint strength reactive diffusion bonded by using the mixed Al–Si–SiC powder.  相似文献   

5.
Abstract

Failure modes of constrained metal foils between two elastic solids are rather different from those in the unconstrained condition. If the interface adhesion is strong between materials, a lower strength thin metal (plastic) foil between two much higher strength metals (elastic) can undergo substantial plastic deformation and fail with high triaxiality induced ductile fracture. Experiments have been conducted to explore the modes of failure and the factors governing fracture in such a constrained metal interlayer. In the present work, the effects of soft inter layer thickness and brittle reaction layer on the fracture behaviour of four point bend specimens have been investigated. A series of solid state diffusion bonds were produced between 25 × 25 mm section titanium bars using pure aluminium foils of different thickness (50, 457, 914, and 2000 μm) as the soft constrained inter layer. All four point bend specimens containing an ~ 2 μm thick intermetallic reaction layer TiAl3 between the titanium and aluminium failed in ductile fracture mode within the soft aluminium interlayer next to the interface. A number of void formations were observed ahead of the crack tip next to the interface. No evidence of interface debonding was observed. However, the specimens containing an 8 μm thick TiAl3 layer failed by brittle fracture along the interface between the titanium substrate and the TiAl3 layer. It was found that decreasing the soft interlayer thickness from 2000 to 457 μm increased the load carrying capacity and decreased the fracture toughness caused by constrained plastic deformation (high triaxiality) of the interlayer.  相似文献   

6.
Zirconium- and titanium-based dissolver vessels containing highly radioactive and concentrated corrosive nitric acid solution needs to be joined to the rest of fuel reprocessing plant made of AISI type 304L stainless steel (SS), which demands high integrity and corrosion resistant dissimilar joints. Solid-state joining process of friction welding was proposed in the present work to join zircaloy-4 and type 304L SS since fusion welding processes produce brittle intermetallic precipitates at the interface which reduce the mechanical strength as well as the corrosion resistance of the joint. The present study attempts to optimize joining parameters, without and with thin Ta and Ni interlayers that can prevent brittle intermetallic formation. Tensile test, three-point bend test, and microhardness measurements were performed on the joints. Characterization techniques such as optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD) were employed. A good friction weld joint of zircaloy-4 to 304L SS was achieved with the joint strength (~540 MPa) greater than that of the base of zircaloy-4, without using any interlayer. A bend ductility of 5° was only obtained without using any interlayer. However, XRD patterns indicated the presence of intermetallics in the friction-welded joints without interlayers. Corrosion test carried out on zircaloy-4 to 304L SS friction joint in boiling 11.5 M nitric acid exhibited corrosion rate of 225 μm/year after 240 h. SEM examination of the corroded joint indicated severe intergranular corrosion attack over stainless steel and preferential dissolution at the interface.  相似文献   

7.
Joint configuration with Ti inserts, which allows the increase of the bonded area of similar materials at the expense of that of dissimilar ones, is suggested. The force to failure for the specimens with the suggested configuration was about two fold higher than that for the specimens with the planar interface. Microstructural analysis of the joints, fracture characterization, mechanical testing and finite elements simulation were conducted in order to elucidate the mechanical behavior of the suggested joint configuration. Failure of joints with Ti-inserts is governed by the brittle behavior of TiC and α-Ti layers, located at the steel–Ti interface, with cracks initiation within the interfacial layer. The cracks propagate first into the brittle α-Ti phase and then cause the fracture in the Ti/Ti bond. The results of finite elements analysis are in good agreement with the analysis of the fracture surfaces.  相似文献   

8.
With the use of Ti/Ni/Cu/Ni multiple foils as interlayer,carbon/carbon(C/C) composite was bonded to Nibased superalloy GH3044 by partial transient liquid-phase bonding technique.The effect of bonding temperature on the microstructures and strengths of the joints was investigated.The results showed that gradient structural multiple interlayers composed of ‘‘C–Ti reaction layer/Ti–Ni intermetallic compound layer/Ni–Cu sosoloid/residual Cu layer/Ni-GH3044 diffusion layer' were formed between C/C composite and GH3044.The shear strength of the C/C composite/GH3044 joint reached the highest value of 26.1 MPa when the bonding temperature was 1,030 °C.In addition,the fracture morphology showed that the fracture mode changed with the increase of bonding temperature.  相似文献   

9.
采用反射式贴片云纹干涉法对焊接接头裂纹尖端位移场了测量,并考察了非均质焊接接头中的HRR主导有效性与J积分断裂判据的应用可行性,结果表明,至少对于本文所研究的情形而言,无论是A537钢采用LB52NS焊条施焊的高匹配接头,还是9%Ni钢,采用OK69.45焊条施焊的低匹配接头,横向位移场中HRR主导失效,而纵向位移场中lgv-lgr的线性关系不同于焊缝或母绪的1/(n+1)。因此,在非均质焊接接头  相似文献   

10.
In the present study,impulse pressuring diffusion bonding technology(IPDB)was utilized between commercially pure titanium and 304 stainless steel(SS)using pure nickel(Ni)as interlayer metal.The interfacial microstructures of the bonded joints were investigated by scanning electron microscopy(SEM)and energy dispersive spectroscope(EDS)analyses.It is found that with the aid of the Ni interlayer,the interdiffusion and reaction between Ti and SS can be effectively restricted and robust joints can be obtained.Intermetallic compounds(IMCs)including Ti_2Ni,Ti Ni,and TiNi_3 are detected at the Ti/Ni interface;however,only Ni–Fe solid solution is found at the Ni/SS interface.The maximum tensile strength of 358 MPa is obtained by IPDB for 90 s and the fracture takes place along the Ti_2Ni and Ti Ni phase upon tensile loading.The existence of cleavage pattern on the fracture surface indicates the brittle nature of the joints.  相似文献   

11.
以铜和Cu-Ti作为中间层的TiAl/GH3536扩散焊   总被引:1,自引:1,他引:0       下载免费PDF全文
采用铜箔和Cu-Ti合金作为中间层进行了TiAl和GH3536的扩散焊试验.以铜箔作为中间层在935℃/10 MPa/1 h参数下获得的焊缝组织以Ti(Cu,Al)2,AlCu2Ti和AlNi2Ti相为主,焊缝中存在裂纹.接头室温平均抗剪强度仅有31 MPa.以Cu-Ti合金作为中间层在935℃下采用三种不同参数进行了TiAl和GH3536的液相扩散焊试验.当加压3 MPa,保温10 min时,扩散焊缝中央还存在着宽度约5μm的残留相.保温时间延长至1 h,焊缝形成了较为均匀的分层组织,获得的接头室温抗剪强度最高,达180 MPa.增大压力至20 MPa,保温2 h获得的接头中出现AlNi2Ti相,接头平均室温抗剪强度下降至90 MPa.  相似文献   

12.
《Acta Materialia》2000,48(18-19):4425-4438
Alumina has been joined at 1150°C and 1400°C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (≈240±20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800–1100°C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000°C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.  相似文献   

13.
利用真空扩散焊方法制备了铁中间层钛-钢扩散焊接头,并采用OM、SEM、EDS、XRD、显微硬度和拉伸试验方法,研究了铁中间层钛-钢扩散复合界面组织和性能。结果表明,在900~1050℃、30 min扩散条件下,Fe、Ti原子在界面处发生了互扩散;钛侧形成βTi+α-βTi+αTi组织,钢侧发生脱碳,铁中间层形成柱状晶组织;拉伸强度随扩散温度升高呈现先增加后减小的趋势,900℃、30 min扩散试样拉伸强度最高,达到260 MPa;拉伸断口具有粗糙断裂区、脆性断裂区及二次断裂区特征,并在断口上检测出TiC、FeTi和Fe2Ti相。  相似文献   

14.
镍作中间层脉冲加压扩散连接钛合金与不锈钢   总被引:2,自引:2,他引:0       下载免费PDF全文
采用纳米Ni粉、纳米Ni镀层、Ni箔作中间过渡层,对TA17近。型钛合金与0Cr18Ni9Ti不锈钢进行了脉冲加压扩散连接,接头抗拉强度分别达到了175,212,334MPa。在金相显微镜下,对拉伸断口形貌进行了观察和分析;利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射分析(XRD)测定了连接接头各区域内的微区成分和物相。结果表明,纳米Ni粉致密度不够高,纳米Ni镀层质量不够高,在很大程度上限制了接头强度的提高;Ni箔中间层的存在成功地阻止了Fe与Ti之间的互扩散,避免了形成脆而硬的Fe—Ti系金属间化合物。  相似文献   

15.
Abstract

Microstructure and mechanical properties of the dissimilar aluminium–magnesium resistance spot welds made with gold coated and bare nickel interlayers are investigated. Welds were made with different welding currents in a range from 16 to 24 kA with a fixed welding time of five cycles. No joints were achieved with a bare nickel interlayer; after welding, specimens were separated without applying any force. Addition of gold coating on nickel surface greatly contributed to the metallurgical bonding at the interfaces and welds easily met requirements of AWS D17·2 standard. Average lap shear strength reached 90% of similar AZ-31B spot weld strength. Fusion nugget size, interfacial microstructure and fracture surface morphology of the welds were analysed.  相似文献   

16.
镁合金与铝合金的夹层扩散焊连接   总被引:2,自引:0,他引:2       下载免费PDF全文
采用锌夹层在356℃温度下对镁铝异种金属进行扩散焊连接,并对接头的微观组织和力学性能进行分析.结果表明,利用镁与锌原子互扩散形成低熔点共晶液相区,能够实现镁铝材料的可靠连接.镁铝焊接接头界面区由铝锌反应层、未充分扩散锌层、锌镁反应扩散层组成.铝基体侧铝锌反应层是固溶体层,镁基体一侧锌镁反应扩散层主要是过饱和的固溶体基体及弥散析出的中间相,该区的中间相成分为Mg2Zn11及MgZn2.锌夹层的加入可有效阻止镁铝之间的互扩散.锌夹层镁铝扩散焊接头抗剪强度远超过镁铝直接真空扩散焊接头的抗剪强度.断口观察及相分析表明,接头失效发生在锌镁反应扩散层.  相似文献   

17.
The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze (ZQSn10-10) with Ni and Ni Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that when the interlayer is Ni or Ni Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc.). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830℃/10 MPa/30min. And when the interlayer is Ni Cu, the optimum bonding parameters are 850℃/10MPa/20min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni Cu interlayer both are 155.8MPa, which is 65 percent of the strength of ZQSn10-10 base metal.  相似文献   

18.
Abstract

Titanium based brazing alloys containing chromium, iron, copper, and nickel as β stabilisers have been studied for joining the titanium alloy Ti–6Al–4V. Two of these alloys were selected for use in producing large gap joints. The first brazing alloy, Ti–12Zr–14Cr–12Cu–12Ni (type 1), can be used to braze Ti–6Al–4V below its β transus temperature. Joints of thickness up to 150 μm can be made in a normal brazing cycle without prolonged holding. The interlayer consists of a β titanium alloy with no precipitation of intermetallic compounds. The second brazing alloy, Ti–12Zr–14Cr–6Fe–5Cu–5Ni (type 2), has to be brazed above the β transus temperature of Ti–6Al–4V. Its powders were mixed with pure titanium and Ti–6Al–4V powders and the mixture was used as the joining interlayer. Interlayers 5 mm in thickness were used to produce joints for microstructural examination and mechanical testing. It was found that residual pores in the interlayers were related to the amount of the brazing alloy in the interlayer. A fully dense interlayer could be obtained with 60 wt-% brazing alloy in the interlayer. The as bonded joints revealed tensile strength equal to 50% of that of the base metal. Diffusional treatment of the joints improved the joint efficiency to about 70%, compared with the base metal.  相似文献   

19.
Joints of Al6061 and Ti6Al4?V alloys with pure Al-particle interlayers were conducted using ultrasonic spot welding. The microstructure, hardness, lap shear strength and fracture energy were measured for different welding energies. With increasing welding energy delivered through the sonotrode, the lap shear strength of the joints increased, reaching about 106?MPa at a welding energy of 1100?J, at which failure occurred in the pull-out mode. In the weld region, the hardness of Al6061 alloy increased with increasing weld energy, whereas the hardness of Ti6Al4?V did not change discernibly. No brittle intermetallic compounds were observed in the joints. Moreover, two simple mechanisms were described for the formation of ultrasonic spot-welded Al–Ti joints with and without the pure Al interlayer.  相似文献   

20.
Aluminium alloy and magnesium alloy were successfully joined by using laser welding/brazing technology via a nickel interlayer. Microstructure and mechanical properties of the dissimilar Al/Mg joints with and without a nickel interlayer were comparatively investigated. No joints were achieved without a nickel interlayer; after welding, specimens were separated without applying any force. By inserting a nickel interlayer, sound metallurgical bonding were obtained at the interfaces. Hence, the joint strength reached 410 N with the failure at Mg/Ni interface. The influence of Ni interlayer on the weld defect, microstructure and joint strength was studied, and the joint formation mechanism was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号