首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《粉末冶金学》2013,56(4):323-327
Abstract

Although powder metallurgy (PM) material is dominated by ferrous alloys, there is a growing interest in Al PM. The usage of Al PM in automotive applications depends on the development of higher density and improved dynamic properties. Several approaches have been proposed to increase density of sintered parts. Warm compaction process of Al powder was used to achieve high density. In this study the authors focused on the effect of warm compaction on Alumix 123 L (ECKA Granules) powder blend. It has been found that warm compaction at 110°C led to a reduction in the ejection force by 27·9%, increased green density to 94% of theoretical density and increased sintered strength to 315 MPa as compared to those pressed at room temperature.  相似文献   

2.
Mechanisms of strength for green compacts made from powders of iron, nickel and its alloys, copper, tin, and zinc are analyzed. The strength of green compacts prepared from metal powders of medium fineness with a relative bulk density (RBD) from 0.119 to 0.568 by two-way compaction in rigid dies with homologous temperatures from 0.15 to 0.59 (pressure from 200 to 800 MPa, powder deformation rate 10?2–10?3 m/sec) is studied. Compact strength is determined by diametric compression of cylindrical compacts. The dependence of strength on compact porosity is studied by the Bal’shin equation. The possibility is demonstrated of using this relationship in order to describe hot compaction and formally describe cold compaction of powders with RBD up to 0.40. The effect of homologous temperature and powder RBD on compact strength is determined. The homologous temperature for transition from warm to hot compaction and the effect of compact density (degree of deformation) on this temperature is studied. It is shown that linear approximation is possible for the dependence of compact strength on powder RBD according to the equation σ f.c = 87–217?RBD.  相似文献   

3.
《粉末冶金学》2013,56(32):155-165
Abstract

Measurements of the tensile strength of spherical cold-pressed aluminium powder, pressed to various densities up to the theoretical maximum, have shown that compaction is a two-stage process. At some high, intermediate pressure, interparticle sliding occurs in a way that does not itself increase densification but makes it easier for further deformation to occur. It is likely that the pressure at which this sliding takes place is dependent on the work-hardening rate of the powder as well as the powder size and morphology. In any case, it is shown to be important to the densification and strength reached by the compact.

It is concluded that the strength of a green compact is dependent upon the interparticle metallic contacts made during compaction. However,the green strength is well below that of wrought aluminium, probably due to the presence of broken-up oxides,which act as stress-concentrators at the interparticle boundaries.  相似文献   

4.
《粉末冶金学》2013,56(2):159-164
Abstract

The effects of warm compaction on the green density and sintering behaviour of aluminium alloys were investigated. Particular attention is paid to prealloyed powders, i.e. eutectic and hypereutectic Al-Si alloys, regarding their potential applications in the automotive industry. The effects of chemical composition, alloying method, compacting temperature and the amount of powder lubricant were studied. The compaction behaviour was examined by an instrumented die enabling simultaneous measurement of density, die wall friction coefficient, the triaxial stresses acting on the powder during the course of compaction and ejection pressure. The sintering behaviour was studied via dilatometeric analysis as well as normal batch sintering. The results show that warm compaction could be a promising way to increase the green density of aluminium alloys, especially prealloyed powders, and to decreased imensional instability during sintering. Moreover, it reduces the sliding friction coefficient and the ejection force during the powder shaping process. This paper presents the significant advantages and drawbacks of using the warm compaction process for commercial PM aluminium alloys.  相似文献   

5.
采用自行设计制造的18m高落锤式高速压机,研究316L不锈钢粉末的高速压制行为.实验结果表明,冲击速度增大可有效提高生坯密度,对室温粉末进行高速压制,当冲击速度从10 m/s提高到18m/s时,生坯密度从7.18 g/cm3提高到7.61 g/cm3.而在同样冲击速度下,对160℃温粉末进行高速压制时,生坯密度从7.33 g/cm3提高到7.76 g/cm3.同时生坯强度随冲击速度的提高而升高,冲击速度从10 m/s提高到18m/s时,160℃压制的生坯强度从72.5 MPa提高到94.1 MPa,室温压制生坯强度从62.1MPa提高到89.3MPa.通过对生坯SEM照片的分析,得知高速压制过程中粉末会发生严重的塑性变形和碎裂现象,孔隙的形状也会发生改变.该文还对高速压制致密化机理进行了探讨,指出在较高的速度压制时,颗粒间的摩擦和绝热剪切作用使粉末颗粒界面的温度升高,有利于粉末颗粒的塑性变形和焊合,从而有效提高了生坯的密度.  相似文献   

6.
Lefebvre L.-P.  Henuse Y.-M.     《粉末冶金学》2013,56(4):325-330
Abstract

In powder metallurgy, green strength has important consequences for part production rates and product end quality. Mechanical interlocking and interparticle cold welding are the main mechanisms responsible for green strength. These mechanisms are affected by compaction pressure, temperature, amount of lubricant and additives admixed to the powder, and surface characteristics of the powder. The present paper describes the effect of iron powder surface modification on the green strength of compacted specimens. The green properties of compacts fabricated from iron powder treated with diluted sulphuric acid and coated with copper by a non-catalytic displacement plating method are presented. The results indicate that surface modifications strongly influence the green strength of the compacts.  相似文献   

7.
《粉末冶金学》2013,56(1):60-64
Abstract

In this experimental study, tensile and fatigue properties of the Alumix 431 alloy (Al, Zn, Mg and Cu alloys) produced using the conventional press and sinter processes in different pressures and temperatures are investigated. The results clearly showed that the warm compacted specimens can reach the mechanical properties of the cold compacted ones under less pressure. In the fatigue tests it was observed that fracture started from large pores as shown in all scanning electron microscope (SEM) examinations and ductile fracture occurred. 85% of the 180 MPa/80°C and 77% of the 230 MPa/RT specimens fractured at the machined surface. Tensile and fatigue properties of warm compacted (180 MPa/80°C) and cold (230 MPa/RT) compacted specimens are almost equal at these same densities. This result indicates the economic benefit of warm compaction by the much lower applied compaction pressure.  相似文献   

8.
《粉末冶金学》2013,56(1):91-93
Abstract

A preliminary study concerning the compaction of metallic powder was carried out in order to investigate a rarely explored route in powder metallurgy, to form complex geometry parts, known as gelcasting. Green bodies produced with as supplied stainless steel powder showed a tendency to form foam, which affected the surface finishing. The mechanical behaviour of green compacts was also affected by the processing additives present in the metallic powder. Organics in the as supplied powder were removed by thermal treatment at 500°C and additional samples were produced. Although no difference in green density was observed, these samples displayed better surface finish and mechanical characteristics, as a result of improved adhesion between the polymer network and particle surface. The results showed that the gelcasting process is able to produce green parts suitable for subsequent thermal treatment.  相似文献   

9.
《粉末冶金学》2013,56(1):70-77
Abstract

The objective of the present study was to investigate high velocity compaction of titanium powder and to prepare a dense composite biomaterial of titanium and hydroxyapatite with the purpose of forming dental components with improved early healing properties. A high purity titanium powder was compacted using high velocity compaction to study the density distribution. Then, a titanium–hydroxyapatite composite was prepared by mixing titanium powders and hydroxyapatite grains. Dental implant components were formed from the high velocity compacted specimens, exposing the hydroxyapatite grains at the component surface. The green density reached more than 98·5% after more than one impact. The composite was heated to 500°C, enough to bind the titanium grains, but to avoid observable reactions. Compacted pure titanium could be sintered to full density. The heated composite material reached 99% density, no reaction was observed between titanium and hydroxyapatite, and the composite material could be formed into dental implants.  相似文献   

10.
《粉末冶金学》2013,56(2):163-167
Abstract

The 7000 series aluminium alloys processed using elemental powder mixtures are prone to distortion, which is manifest as hourglassing or waisting in cylindrical specimens. By characterising the density distribution using hardness measurements, it is shown that the green density is not evenly distributed through a part, even though aluminium is relatively soft and readily compacted. Because the density equilibrates during sintering, the non-uniform green density leads to distortion. The cause of this distortion is a result of differential shrinkage, which occurs during sintering as well as on solidification during cooling from sintering. Distortion can be controlled by increasing the compaction pressure, which homogenises the green density and does not affect the tensile properties.  相似文献   

11.
《粉末冶金学》2013,56(5):130-148
Abstract

Fine artificial graphite powders can be cold compacted to give bodies of high density (~ 88% of theoretical), low permeability (B0 ~10–14 cm2), and reasonable strength. Such powders, after vacuum annealing, will not compact.

Die-compacted powder has strongly anisotropic properties owing to a high degree of preferred orientation within the compact; this effect is less marked in hydrostatically compacted powder. Minor dimensional changes occur when compacts are annealed in the range 600-1000°C.

The preparation of fuels by incorporation of fissile and fertile materials into graphite powder and cold compacting is described.  相似文献   

12.
Abstract

Powder die compaction is modelled using the finite element method and a phenomenological material model. The Drucker–Prager cap model is modified with the goal to describe the formation of cracks during powder transfer, compaction, unloading, and ejection of the parts from the die. This is achieved by considering the cohesive strength and the cohesion slope, which characterise the current strength of the powder compact in the Drucker–Prager model, as state dependent variables. Evolution equations are formulated for these variables, so that the strength increases by densification and decreases by forced shear deformation. Some of the parameters appearing in the evolution equations are determined from measured green strength values. An iron based powder (Distaloy AE) is used for the experiments. Examples are shown to demonstrate that the density distribution can be calculated accurately as compared with an experiment, that cracking can be modelled at least qualitatively correctly, and that the compaction of complex 3D parts can be simulated.  相似文献   

13.
《粉末冶金学》2013,56(4):351-354
Abstract

During powder compaction, frictional forces between the compact and the tool elements are developed. This causes pressure gradients in the compact, which produces, at the same time, undesirable density differences. This work presents a study about the effect of the compaction process sequence (CPS) and the ejection process on the axial density distribution during the uniaxial double ended pressing process of a high slenderness bushing. Different pressing processes were selected and carried out with a hydraulic press at laboratory and industrial levels (differences in the extraction method). Compacts were presintered and cut into thin discs in order to measure the local densities along the part, using the Archimedes' method. The obtained results show that the compaction process sequence has an important effect on the axial density distribution in a green compact, mainly in the case of compacts of high slenderness (>5). The ejection causes in the compact a post-compaction modification of the axial density distribution. Therefore, it is necessary to optimise the pressing process to obtain an adequate density distribution for each specific part.  相似文献   

14.
Rapid sintering of iron powders under action of electric field   总被引:1,自引:0,他引:1  
《粉末冶金学》2013,56(2):203-204
Abstract

A new rapid sintering technique for iron powders compacted under the action of an electric field with high current density has been advanced. The results show that the sintering densification of iron powder could be finished in less than 6 min at a temperature of 800u C reached at a heating rate of 600 K s?1, and the relative density of the sintered compact was over 95%. Moreover, the sintering densification was almost finished in the heating stage of the compact.  相似文献   

15.
研究的目标是结合粉末粘结技术和温压技术以制备高质量、高性能的粉末冶金材料。预粘结粉末的一大优点是能有效地降低成分偏析,因此在混粉过程中应尽量避免偏聚。本文采用两种混粉工艺制备预粘结铁基混合粉,通过不同的压制压力、不同的粘结剂含量以常温压制和温压压制制备出铁基粉末冶金材料,测量其压坯密度并进行比较分析。研究结果表明,不同预粘结工艺、压制温度和粘结剂含量对压坯密度影响很大。在一定的粘结剂含量范围内,生坯密度随粘结剂含量增加而呈线性减少。不同的预粘结工艺对生坯密度的影响随着粘结剂含量的增加而增大。  相似文献   

16.
《粉末冶金学》2013,56(3):278-284
Abstract

A new technological approach to the fabrication of high density powder metallurgy (PM) parts via single pressing sintering, allowing cold compaction to be performed without admixed lubricants, has been studied. The influence of in pore gas on the compacts' green density and their sintered properties were evaluated. A mathematical expression relating in pore gas pressure in the compacts to the green density was developed. The expression showed that in order to reduce the negative influence of gases trapped in the pores it is necessary to ensure effective air drainage from the compaction zone. In order to ensure sufficient air evacuation during cold compaction, a new design of porous die was developed. The behaviour of powder mixes with different lubricants during cold compaction in porous die was investigated. All the test conditions were evaluated in terms of green and sintered properties, including the ejection force, green and sintered densities, tensile strength and surface hardness. In the context of the experimental work, compaction in porous die promoted the improved combination of green and sintered properties compared with compaction in conventional dies.  相似文献   

17.
《粉末冶金学》2013,56(4):349-360
Abstract

The initial data needed to design metal powder compaction die are: compact shape and density, powder mix composition, compaction and radial pressure, part number and tool materials. The design targets are: diameters of insert and ring, sometimes number of rings and interference or interferences. The constraints include: no tensile stresses on the insert, no risk of relative motion at part ejection, no unwanted alteration of material microstructures and maximum stresses always below the allowable limits. Usually the design is based on engineering experience, company knowhow, and approximated analytical calculations and cost considerations.

This study is focused on the use of numerical methods to determine the design parameters of dies for powder compaction. Both room temperature and warm compaction have been investigated. Numerical algorithms, implemented into FEM calculation codes, enable one to optimise the common diameter of insert and ring, corresponding to the lowest stresses on both items, or to find the minimum value of the outer diameter. A wide range of compaction pressures, die materials and geometries, interferences and allowable stresses have been explored. To compare the results, based either on analytical or numerical methods, circular dies have been investigated. The differences among the results depend on the consideration of the actual stressed length, or compact height, and total die length. The calculations by analytical methods overestimate the stresses. The paper presents some suitable nomograms for the comparison of results of calculations performed either by Laméformulas or by sophisticated numerical methods.  相似文献   

18.
利用粉末冶金技术制备纯铁软磁材料,在不同温度和压力下将不同粒径铁粉压制成生坯,并在保护气氛下进行烧结。结果表明:不同粒径铁粉混合有助于压坯密度的增加,适宜的压制温度可以有效地促进粉末流动,避免大尺寸孔洞的形成,优化组织。140℃、800 MPa温压条件下雾化铁粉压坯密度最高可达7.35 g·cm-3。对比常温压制,温压压坯烧结后孔洞分布均匀。烧结体密度随温度的升高而上升,雾化铁粉压坯在1250℃烧结后密度最高可达7.47 g·cm-3。在一定范围内,软磁材料磁性能与密度成正比,混粉压制试样的密度接近理论值,但在混合铁粉中,较细的铁粉夹杂于粗粉中,阻碍磁畴壁移动,造成饱和磁化强度(Ms)偏小、矫顽力(Hc)偏大的现象,Ms为205.51 emu·g-1,Hc为7.9780 Oe。  相似文献   

19.
《粉末冶金学》2013,56(23):219-242
Abstract

The deformation of particles and the general process of densification during the roll-compacting of strip from metal powder have been determined by photomicrographic and QTM studies. Observations were made on the expansion of the compacted strip after it had passed the plane joining the roll axes. The effect was related to elastic recovery of the material and the expansion of gases entrapped in the pores between the particles.

The production of satisfactory green strip was found to be restricted to a range of thicknesses obtained between certain maximum and minimum roll gaps. These limits were related to roll pressure and strip density. It was also restricted by a maximum rolling speed that was governed by powder flow to the compaction zone.

Density variations that occurred across the width and through the thickness of green strip were also determined.  相似文献   

20.
《粉末冶金学》2013,56(2):80-85
Abstract

The dependence of green strength on green density and on compacting pressure was investigated for the bidirectional die pressed and isostatically pressed Cu powder compacts. The breaking strength of the pressed Cu compact was found to increase with green density and also with compacting pressure. The green strength seemed to be directly proportional to the contact area between powder particles. A theoretical equation for the relationship between green density and contact area was derived from a geometrical consideration, and agreed well with experimental findings. PM/0272  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号