首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
Abstract

CaCu3–xZnxTi4O12 (x is from 0 to 1·0) polycrystalline samples were fabricated via a two-step solid state reaction process. The lattice parameter of the monophasic CaCu3Ti4O12 phase increased as Zn content increased. Scanning electron microscopy (SEM) images of the CCTO ceramic show bimodal grain size distribution and the grain size decrease largely with the appearance of Zn2TiO4 second phase. The dielectric permittivity of pure CCTO ceramic is ~1·5×104 at f?=?100 Hz. The dielectric constant of the sample largely increased with Zn substitution in the frequency range f<104 Hz. The highest dielectric constant was 6·2×104 at f?=?100 Hz with Zn substitution of x?=?0·8. The improved dielectric properties are believed to be related to the presence of a thin grain boundary barrier layer. The resistivity of the grain boundary decreased largely with Zn substitution as evidenced from the impedance plots.  相似文献   

2.
CaCu3-xZnxTi4O12 ceramics (x = 0, 0.05, 0.10) were successfully prepared by a conventional solid-state reaction method. Their structural and dielectric properties, and nonlinear electrical response were systematically inspected. The X-ray diffraction results indicated that single-phase CaCu3Ti4O12 (JCPDS no. 75–2188) was obtained in all sintered ceramics. Changes in the lattice parameter are well-matched with the computational result, indicating an occupation of Zn2+ doping ions at Cu2+ sites. The overall tendency shows that the average grain size decreases when x increases. Due to a decrease in overall grain size, the dielectric permittivity of CaCu3-xZnxTi4O12 decreases expressively. Despite a decrease in the dielectric permittivity, it remains at a high level in the doped ceramics (~3,406–11,441). Besides retention in high dielectric permittivity, the dielectric loss tangent of x = 0.05 and 0.10 (~0.074–0.076) is lower than that of x = 0 (~0.227). A reduction in the dielectric loss tangent in the CaCu3-xZnxTi4O12 ceramics is closely associated with the enhanced grain boundary response. Increases in grain boundary resistance, breakdown electric field, and conduction activation energy of grain boundary as a result of Zn2+ substitution are shown to play a crucial role in improved grain boundary response. Furthermore, the XPS analysis shows the existence of Cu+/Cu2+ and Ti3+/Ti4+, indicating charge compensation due to the loss of oxygen lattice. Based on all results of this work, enhanced dielectric properties of the Zn-doped CCTO can be explained using the internal barrier layer capacitor model.  相似文献   

3.
An efficient synthesis is used for the first time to prepare CaCu3Ti4?xWxO12 (x = 0.01, 0.03, and 0.05) electroceramics for energy storage capacitors. CaCu3Ti4?xWxO12 ceramics are synthesized via flame synthesis of metal nitrates precursors in nonaqueous solution using cheap, stable, and insoluble solid TiO2 powder. The pathway yielded a CaCu3Ti4O12 (CCTO) phase with the traces of CuO and CaTiO3 sintered at 1050°C for 30 h. The SEM micrograph shows the grains with smooth surfaces associated with cubical appearance and the size range of 1.5–7, 2.0–7.5, and 2.0–8.0 μm for CCTWO01, CCTWO03, and CCTWO05, respectively. The EDX and XPS analyses show the presence of Ca, Cu, Ti, W, and O elements confirming the purity of these ceramics. The complex impedance and modulus (M) spectroscopy show that the dielectric constant (εr) values of the W‐doped CCTO were dominantly affected by the electrical properties of the grain boundary, which is also evident from the SEM micrographs. The grain‐boundary resistance decreased with increasing tungsten content. The activation energies for the grain boundaries were calculated from the impedance and modulus data using the slope of the ln τ versus 1/T and were found to be in the range 0.62–0.67 eV.  相似文献   

4.
《Ceramics International》2017,43(8):6363-6370
The influence of partial replacement of Ti4+ ions by Te4+ in calcium copper titanate lattice on dielectric and non-linear current- voltage (I–V) characteristics was systematically studied. There was a remarkable increase in the values of the nonlinear coefficient (α) with Te4+ doping concentration in CaCu3Ti4-xTexO12 (where, x=0, 0.1, 0.2).For instance, the α values increase from 2.9 (x=0) to 22.7 (x=0.2) for ceramics sintered at 1323 K/8 h. The room temperature value of current density (J) at the electrical field of 250 V/cm for CaCu3Ti3.8Te0.2O12 ceramics is almost 400 times higher than that of the pure CaCu3Ti4O12 ceramics sintered at 1323 K. A systematic investigation into I–V behaviour as a function of temperature gave an insight into the conduction mechanisms of undoped and doped ceramics of calcium copper titanate (CCTO). The calculated potential barrier value for doped ceramics (~ 0.21 eV) dropped down to almost one third that of the undoped ceramics (~ 0.63 eV).  相似文献   

5.
CaCu3-xNixTi4O12 (x?=?0, 0.05, and 0.10) powders were synthesized using a solid state reaction method. Phase structure and microstructure analyses revealed that all sintered CaCu3-xNixTi4O12 ceramics were of a pure phase. The CaCu3Ti4O12 ceramics had a dense microstructure and grain sizes were enlarged by doping with Ni2+. Interestingly, the dielectric permittivity was significantly enhanced, whereas the loss tangent was greatly suppressed to ~0.046–0.034 at 1?kHz. All sintered ceramics exhibited non-Ohmic characteristics. Clarification of the influences of DC bias showed that the dielectric permittivity and loss tangent values were increased by DC bias. The resistance of grain boundaries and the associated conduction activation energy of CaCu3-xNixTi4O12 ceramics were reduced as the DC bias voltage increased. Therefore, the observed non-Ohmic behavior and significantly enhanced dielectric properties should be closely related to variation in the Schottky barriers at the grain boundaries.  相似文献   

6.
The solid solution system Nd2?xCexTi2O7 has been investigated. The solubility limit of Ce in Nd2?xCexTi2O7 was found to be 0·5–0·75 according to X-ray diffraction and X-ray photoelectron spectroscopy results. Ce substitution increases the b and c axes and the volume of the unit cell due to its larger ionic radius. Nd2?xCexTi2O7 (x?=?0·05, 0·25, 0·5, 0·75) textured ceramics were fabricated using spark plasma sintering. The ferroelectric and dielectric properties of the ceramics were studied. Ce substitution decreases the Curie point Tc of Nd2?xCexTi2O7 compounds. The results suggest that the Tc of Ce2Ti2O7 is <1445°C.  相似文献   

7.
Substitution of (Al3+, Nb5+) co–dopants into TiO6 octahedral sites of CaCu3Ti4O12 ceramics, which were prepared by a solid state reaction method and sintered at 1090 °C for 18 h, can cause a great reduction in a low–frequency loss tangent (tanδ≈0.045–0.058) compared to those of Al3+ or Nb5+ single–doped CaCu3Ti4O12. Notably, very high dielectric permittivities of 2.9 ? 4.1 × 104 with good dielectric–temperature stability are achieved. The room–temperature grain boundary resistance (Rgb≈0.37–1.17 × 109 Ω.cm) and related conduction activation energy (Egb≈0.781–0.817 eV), as well as the non–Ohmic properties of the co–doped ceramics are greatly enhanced compared to single–doped ceramics (Rgb≈104–106 Ω cm and Egb≈0.353–0.619 eV). The results show the importance of grain boundary properties for controlling the nonlinear–electrical and giant–dielectric properties of CaCu3Ti4O12 ceramics, supporting the internal barrier layer capacitor model of Schottky barriers at grain boundaries.  相似文献   

8.
9.
《应用陶瓷进展》2013,112(2):102-105
Abstract

The non-stoichiometric compositions of Bi layered structural SrBi4Ti4O15 ferroelectric materials (SrBi4+2xTi4O15+3x, x=?0·04, ?0·02, 0, 0·02 and 0·04) are investigated as the main precursors to find the influence of Bi2O3 content on the characteristics of SrBi4Ti4O15 ceramics. The effect of compositional variation on the sintering and the dielectric characteristics of SrBi4Ti4O15 ceramics are deduced with the aid of X-ray diffraction patterns, scanning electron microscopy observation and dielectric–temperature curves. From the scanning electron microscopy observations, the SrBi3·92Ti4O14·88 and SrBi3·96Ti4O14·94 ceramics reveal two phased grain growth, bar typed and irregularly disc typed grains coexist; the other SrBi4+2xTi4O15+3x ceramics reveal irregularly disc typed grains. From the X-ray patterns, the Bi2Ti2O7 and SrTiO3 phases are observed in the SrBi3·92Ti4O14·88 and SrBi3·96Ti4O14·94 ceramics. Except the SrBi3·96Ti4O14·94 ceramics, the other SrBi4+2xTi4O15+3x ceramics have revealed a splitting peak in the (119) plane. It is also shown that the compositional variation has apparent influences on the grain morphologies, the bulk densities, the Curie temperatures and the maximum dielectric constants of SrBi4+2xTi4O15+3x ceramics.  相似文献   

10.
《Ceramics International》2017,43(12):9178-9183
Low temperature preparation of CaCu3Ti4O12 ceramics with large permittivity is of practical interest for cofired multilayer ceramic capacitors. Although CaCu3Ti4O12 ceramics have been prepared at low temperatures as previously reported, they have rather low permittivity. This work demonstrates that CaCu3Ti4O12 ceramics can not only be prepared at low temperatures, but they also have large permittivity. Herein, CaCu3Ti4O12 ceramics were prepared by the solid state reaction method using B2O3 as the doping substance. It has been shown that B2O3 dopant can considerably lower the calcination and sintering temperatures to 870 °C and 920 °C, respectively. The relative permittivity of the low temperature prepared CaCu3Ti4−xBxO12 ceramics is about 5 times larger than the previously reported results in the literature. Furthermore, the dielectric loss of the CaCu3Ti4−xBxO12 ceramics is found to be as low as 0.03. This work provides a beneficial base for the future commercial applications of CaCu3Ti4O12 ceramics with large permittivity for the cofired multilayer ceramic capacitors.  相似文献   

11.
A series of Ni0·5?xZn0·3?xMn0·2+2xFe2O4 ferrites was successfully prepared by the sol–gel autocombustion method. The structure and electromagnetic properties of the powders were characterised by X-ray diffraction, SEM and vector network analysis. The pure powders were formed by heating at 1200°C for 3 h in air, and grain sizes increased as the amount of substitution ranged from x?=?0·0 to x?=?0·25. For samples with x?=?0·1, a minimum reflection loss of ?27·57 dB was observed at 11·0 GHz with the less than ?10 dB absorption bandwidth at 8·0 GHz with 3·8 mm thickness. The results indicate that substitution with Mn and Zn ions can greatly improve the microwave absorption properties of NiFe2O4 ferrites.  相似文献   

12.
《Ceramics International》2022,48(16):23428-23435
CaCu3Ti4O12-xwt%BiSbO4 ceramics (CCTO-xwt%BSO, x = 0, 1, 2, 3) were prepared by solid-state reaction method. The microstructure, dielectric properties, varistor properties, photoluminescence properties of CCTO-xwt%BSO ceramics were studied in this work. Results showed that all samples formed CaCu3Ti4O12 (CCTO) single phase. Doping BiSbO4 (BSO) restrained the abnormal grain growth and increased the grain boundary density of ceramics. The introduction of BSO led to the increase of the grain boundary resistance, reducing the dielectric loss and enhancing the temperature stability of dielectric properties. The nonlinear electrical characteristics are enhanced with proper concentration of BSO. And the improved varistor performance with breakdown electric field of ~3.98–34.6 and nonlinear coefficient of ~1.49–2.96 are obtained for CCTO-xwt%BSO samples. In addition, the photoluminescent emission of the samples is enhanced with the addition of appropriate equivalent BSO, showing the potential applications in novel devices with photoluminescent/electrical multifunctional properties.  相似文献   

13.
(BiFeO3)1?x–(CuCa3Ti4O12)x (x = 0.00, 0.10 and 0.20) ceramics had been prepared via the mixed route. The crystal structure transformation of BiFeO3 (BFO) from rhombohedral to pseudotetragonal phase was induced by 20 mol% CuCa3Ti4O12 (CCTO). Impedance measurements suggested the increase in grain boundary resistance, and CCTO addition could block the conduction path and stabilize the motion of defects. The dielectric constant and the loss tangent of BFO as a function of frequency were found to be incremental on increasing CCTO contents. The enhancement of magnetization would be attributed to the effective suppression of the spiral spin structure and the structure transformation.  相似文献   

14.
The microstructural evolution, non‐Ohmic properties, and giant dielectric properties of CaCu3Ti4?xGexO12 ceramics (x=0‐0.10) are systematically investigated. The Rietveld refinement confirms the existence of a pure CaCu3Ti4O12 phase in all samples. Significantly enlarged grain sizes of CaCu3Ti4?xGexO12 ceramics are associated with the liquid phase sintering mechanism. Enhanced dielectric permittivity from 6.90×104 to 1.08×105 can be achieved by increasing Ge4+ dopant from x=0‐0.10, whereas the loss tangent is remarkably reduced by a factor of ≈10. NonOhmic properties are enhanced by Ge4+ doping ions. Using impedance and admittance spectroscopies, the underlying mechanisms for the dielectric and nonlinear properties are well described. The improved nonlinear properties and reduced loss tangent are attributed to the enhanced resistance and conduction activation energy of the grain boundaries. The largely enhanced permittivity is closely associated with the enlarged grain sizes and the increase in the Cu+/Cu2+ and Ti3+/Ti4+ ratios, which are calculated from the X‐ray absorption near‐edge structure.  相似文献   

15.
The improved dielectric properties and voltage‐current nonlinearity of nickel‐doped CaCu3Ti4O12 (CCNTO) ceramics prepared by solid‐state reaction were investigated. The approach of A′‐site Ni doping resulted in improved dielectric properties in the CaCu3Ti4O12 (CCTO) system, with a dielectric constant ε′≈1.51×105 and dielectric loss tanδ≈0.051 found for the sample with a Ni doping of 20% (CCNTO20) at room temperature and 1 kHz. The X‐ray photoelectron spectroscopy (XPS) analysis of the CCTO and the specimen with a Ni doping of 25% (CCNTO25) verified the co‐existence of Cu+/Cu2+ and Ti3+/Ti4+. A steady increase in ε′(f) and a slight increase in α observed upon initial Ni doping were ascribed to a more Cu‐rich phase in the intergranular phase caused by the Ni substitution in the grains. The low‐frequency relaxation leading to a distinct enhancement in ε′(f) beginning with CCNTO25 was confirmed to be a Maxwell‐Wagner‐type relaxation strongly affected by the Ni‐related phase with the formation of a core‐shell structure. The decrease of the dielectric loss was associated with the promoted densification of CCNTO and the increase of Cu vacancies, due to Ni doping on the Cu sites. In addition, the Ni dopant had a certain effect on tuning the current‐voltage characteristics of the CCTO ceramics. The present A′‐site Ni doping experiments demonstrate the extrinsic effect underlying the giant dielectric constant and provides a promising approach for developing practical applications.  相似文献   

16.
《应用陶瓷进展》2013,112(4):214-219
Abstract

Polycrystalline ceramic samples of magnesia doped GdSm1–xMgxZr2O7–x/2 have been prepared by conventional solid state reaction method using high purity oxides. The influence of magnesia dopant content on densification, microstructure and electrical properties of GdSm1–xMgxZr2O7–x/2 ceramics are investigated. Magnesia doping promotes the sintering densification behaviour of GdSm1–xMgxZr2O7–x/2 ceramics. GdSm1–xMgxZr2O7–x/2 (x?=?0, 0·05, 0·10) ceramics have a single phase of the pyrochlore type structure, while GdSm1–xMgxZr2O7–x/2 (x?=?0·15, 0·20) ceramics consist of the pyrochlore type structure and a small amount of magnesia as the second phase. The total conductivity of GdSm1–xMgxZr2O7–x/2 ceramics obeys the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. GdSm1–xMgxZr2O7–x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1·0×10–4 to 1·0 atm at each test temperature. The maximum value of the total conductivity is 1·29×10–2 S cm–1 at 1173 K for the GdSm0·85Mg0·15Zr2O6·925 ceramic.  相似文献   

17.
Thermal stability of calcium copper titanate was studied by differential scanning calorimetry, thermogravimetry and high-temperature mass spectrometry. Calcium copper titanate (CCTO) had no thermal effects and mass losses caused by thermal dissociation or any phase transitions, besides melting, in the temperature range of 298–1423?K. The melting point of calcium copper titanate is 1398?K. The endothermic effect at 1250?K was associated with the decomposition of copper (II) oxide segregated in the intergrain space of the CaCu3Ti4O12-CuO ceramics. In this connection, we proposed a simple method for estimating the content of copper oxide in the CaCu3Ti4O12-CuO composite. The processes of evaporation of CaCu3Ti4O12 in the temperature range of 1500–2100?K were studied by high-temperature mass spectrometry. In the temperature range of 1500–1750?K, easily volatilized copper oxide was evaporated selectively from the calcium copper titanate. At the temperature of 2100?K, atomic calcium and titanium oxides, TiO and TiO2, were present in the vapor.  相似文献   

18.
《Ceramics International》2017,43(5):4366-4371
CaCu3−xRuxTi4O12 (x=0, 0.03, 0.05 and 0.07) electronic ceramics were fabricated using a conventional solid-state reaction method. The microstructure, grain sizes and dielectric properties as well as the impedance behaviours of the ceramics were carefully investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) results indicate that ruthenium (Ru) dopant inhibits the growth of grains during the sintering process by promoting the formation of high melting point oxides of Ca and Ti. The study on the frequency dependence of dielectric properties suggests that Ru doping shifts the dielectric loss peak of CCTO to a much lower frequency, thereby reducing the dielectric loss of CCTO at high frequency (f>1.0 MHz) accordingly. When doped with proper amount of Ru, the high frequency dielectric loss of CCTO is reduced to a very low value (tanδ<0.05). Our study conclusively suggests that Ru-doped CCTO, with sufficiently low dielectric loss and decent permittivity, presents potential applications at high frequency.  相似文献   

19.
《应用陶瓷进展》2013,112(3):136-139
Abstract

Abstract

Bi5?xNax/2Cex/2Ti3FeO15 (BNTF-100x, x?=?0, 0·05, 0·10, 0·20, 0·30, 0·40 and 0·60) ceramics were prepared via solid state sintering process. With x increasing, the resistivity increases at first and then decreases. The lower the concentration of oxygen vacancies, caused by more (Na,Ce) dopant adding, the less the deep trap energies in the band gap for the activated electrons to be mobile. For the samples containing high concentration of oxygen vacancies, the conductivities are higher when they are annealed in the air and oxygen than that in the vacuum. On the contrary, for the samples containing low concentration of oxygen vacancies, the conductivities of the samples in different annealing conditions behave quite the same way. Most (Na,Ce) doped Bi5Ti3FeO15 ceramics exhibit intrinsic conduction at high temperatures with corresponding activation energies of 1·1–1·6 eV, while the extrinsic conduction has a close relationship with the concentration of oxygen vacancies and the activation ability of electrons.  相似文献   

20.
Ca1+xCu3 ? xTi4O12 powders were synthesized by a conventional solid‐state reaction. X‐ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca1 ? xCu3 ? xTi4O12 ( =  1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE‐SEM images show that the Ca1+xCu3 ? xTi4O12 (0  <   <  3) powders are composed of several agglomerated particles with irregular morphology. X‐ray absorption near‐edge structure spectroscopy (XANES) spectra indicated [TiO5Voz]‐[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Voz  =  Vox, Vo?, and Vo??) whereas in the CaTiO3 powder, this analysis indicated [TiO6]–[TiO6] complex clusters in the structure. Ultraviolet‐visible (UV–vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号