首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Vibration of welded parts is usually applied to achieve effects similar to thermal stress relief. With vibration, it is not only residual stresses that are affected. Using two different welding processes, the influence of vibration on hardness and toughness of the weld was measured. For each welding process, two series of Charpy specimens were made over the temperature range from -60 to +20°C. The only difference between the two series was in performing welding with or without vibration. Slight differences in weld metal hardness were observed. Toughness measurements show an increase in impact toughness and a significant increase in fracture toughness in samples which were vibrated during welding.  相似文献   

2.
Abstract

The present paper presents the influence of welding current shape on weld strength of resistance spot welds of zinc coated mild steel sheets. The influence is analysed at different levels of the electrode wear. Welding currents with different peak values and different RMS (root mean square) values were used in the experiment. The results show that welding current with high peak values implies higher weld strength.  相似文献   

3.
Abstract

A new cost effective process for generating different weld element compositions has been examined. Utilising tandem welding technology, different series aluminium filler wires were mixed in a single weld pool with the result that the composition of the principal alloy elements, copper and magnesium were accurately controlled. Thermodynamic modelling was then used to predict an optimum weld bead composition for eliminating solidification cracking when welding Al2024. In order to validate the predicted target composition, the tandem process was used to control the composition of the weld bead. The presented results show that using this system to deposit a controlled ternary composition weld, solidification cracking was eliminated when welding highly constrained test pieces. In contrast, cracking was evident when using commercially available binary filler wires under the same conditions.  相似文献   

4.
Abstract

An experimental method of controlling weld composition when welding Al2024 has been explored. Utilising the tandem process and a cold wire feed unit, two and three commercially available filler wires were mixed in a single weld pool to control composition. Thermodynamic modelling was used to provide optimum weld compositions for the eradication of solidification cracking. Validation showed that by controlling the principal elements, not only was cracking eliminated, the mechanical properties of the weld could be varied. In particular, a composition was identified, which offered adequate joint strength and ductility. Exceeding this composition resulted in a corresponding increase in weld hardness at the expense of joint ductility.  相似文献   

5.
Abstract

Vibration during welding can be used to obtain certain changes in mechanical properties of weld metal. Research work on the influence of vibration on the secondary microstructure of welds and hence on the Charpy toughness was performed. Vibration during welding exhibits positive effects on the microstructure constituent formation. Multipass welding was simulated with reheating of the original single pass weld in order to obtain similar microstructure to multipass welds. Microstructures were examined with an optical microscope. Additionally, fractographic examination of the rupture of Charpy specimens was performed. Changes in the microstructure according to vibration were observed which affect toughness of the weld metal. Vibration during welding was rated more effective in the case of reheating the weld metal, which is the case in multipass welding.  相似文献   

6.
Abstract

The study on the vertical and horizontal spot vibration welding of Inconel 690 alloy was carried out to observe the dendrite morphologies and estimate the temperature gradient G and growth rate R under different vibration conditions. The purpose is to further understand the mechanism of microstructure changes under vibration. Based on different temperature distributions along vertical and horizontal directions in the centre of a melting pool, it is found that vertical and horizontal vibrations induce the divergence of the nucleates site and grain growth rate then affect the grain morphologies. Vertical vibration welding creates a coarse dendrite structure with sturdy secondary and tertiary dendrite arms, and the X-ray diffraction (XRD) profile of this structure shows a strong (200) peak. Horizontal vibration welding results in grain refinement and a relatively disordered structure, which is reflected by its low XRD intensity. The study shows that vibration affects the weld structure by improving nucleates and changing growth rate.  相似文献   

7.
Abstract

The effects of welding parameters on friction stir welding of pure titanium lap joint were investigated together with the microstructural characteristics of the sound joint. Three kinds of welding defects were found under the condition of tool load control, namely, the groove-like defect, the inner cavity defect and the overheating rough surface and tool penetration defect with increasing heat input. The tool plunge depth control effectively increased the lap width compared with the tool load control, so the sound joints fractured in the base metal were acquired at 250 rev min–1–75 mm min–1 and 200 rev min–1–50 mm min–1. The sound joint consisted of the thermomechanically affected zone, the stir zone, the lap zone and the top layer. The microstructure was fined obviously after welding, and finer grains were observed in the lap zone and top layer.  相似文献   

8.
Abstract

The authors welded magnesium alloy AZ31B sheets using the technique of resistance spot welding with cover plates, and investigated the effects of welding parameters on the tensile shear strength of joints and shape characteristic of nugget. The joints with high tensile shear strength were obtained under relatively low welding current. The equiaxed grains with the many intragranularly precipitated particles Mg17Al12 in the nugget were observed.  相似文献   

9.
Abstract

Audible sound signals detected during the resistance spot welding (RSW) of zinc coated steels were investigated in order to assess their suitability for estimating the strength of the weld. A new sonic emission indicator was introduced and compared to a commonly used emission count indicator. A new method of spot weld strength estimation based on the two indicators is presented. The advantage of the method is that it makes it possible to establish the stage when the electrode is worn out. The method enables the development of improved RSW process control algorithms.  相似文献   

10.
Abstract

Conventional friction stir welding (FSW) of high strength and high melting point materials, such as steel and titanium, has the disadvantages of a serious tool wear problem and slow welding speed. A new friction stir welding process for such materials called 'electrically enhanced friction stir welding process (EHFSW)' has been suggested and analysed using finite element modelling. The basic idea of EHFSW is that electric current passes from the welding tool into the workpiece through the contact area in the welding region. Thus it results in more localised heating while welding is in progress and is not simply a preheating process. The temperature distribution in the workpiece during the pin plunge stage and the welding stage of the EHFSW process has been determined. The results show that EHFSW can reduce the plunge force significantly with the help of localised electrical heating during the pin plunge stage, which may imply lower tool wear when compared with conventional FSW. At the same time, in the welding stage, the simulation results indicate that the welding speed of the EHFSW process can be at least two times faster than that of the conventional FSW process. Thus, finite element analysis shows that EHFSW is a promising process and could reduce tool wear while improving the welding speed, especially for high melting/O point materials.  相似文献   

11.
Abstract

Constant heating rate hydrogen thermal analyses were carried out for weld metals with tensile strengths in the range 490–1000 MPa. It was found that the hydrogen diffusion rate in the highest strength weld metal is lower by a factor of five than that in a lower strength variant. The hydrogen diffusion behaviour varied greatly between weld metal and wrought steel. Finite difference analyses indicated that this difference can be attributed to the changes in the interaction energy between a trap site and hydrogen. Using the analysis it was possible to determine apparent diffusion rates at temperatures from 20 to 300°C and explain satisfactorily the effect of plastic deformation on hydrogen diffusion in a steel.  相似文献   

12.
Abstract

The effect of the carbon content on the creep rupture strength and the microstructural change in weld heat affected zone (HAZ) during high temperature services was investigated in order to alleviate the decrease in the creep rupture strength in HAZ of heat resistant ferritic steels. The test specimens were prepared from 9Cr–3Co–3–W–V, Nb ferritic steel plates with carbon content ranging from 0˙005 to 0˙1%. After the simulated HAZ thermal cycle treatments at the peak temperature of 1273 K was applied on these specimens, creep rupture tests, aging tests and microstructural examinations were conducted. As a result, it was clarified that the creep rupture time of simulated HAZ became longer and the decrease in the creep rupture strength in HAZ was alleviated by decreasing the carbon content. Then the mechanism to explain the effect of the carbon content was discussed from a viewpoint of the growth of precipitates, such as M23C6 and MX, during long term heating.  相似文献   

13.
Abstract

Resistance spot welds were produced in dissimilar combinations of advanced high strength steels. A 600 MPa dual phase (DP) steel was welded to a high strength low alloy, a 780 MPa DP, and a 780 MPa transformation induced plasticity steel. The microstructure and mechanical properties were characterised using metallurgical techniques and lap shear and cross-tension testing. The results show that a pullout failure mode with improved mechanical properties is obtained when DP600 is paired with other advanced high strength steels, compared to the DP600 welded to itself, which is prone to interfacial failure and poor mechanical properties, given the same weld size. An in depth comparison of the interfacial to pullout failure transition in similar DP600 and DP780 and dissimilar DP600–DP780 welds was performed. The results show that the interfacial to pullout transition for the DP600–DP780 welds is significantly lower than with DP600 welded to itself. Increased fusion zone strength through dilution with the DP780 promotes button pullout at smaller weld sizes. Furthermore, it was observed that softening in the heat affected zone of DP780 promoted a pullout failure mode in that material.  相似文献   

14.
Abstract

Microstructures, and hence mechanical properties, of high strength steel weld metals are affected by cooling rate. Weld metal microstructures for a nominal composition of Fe–0·05C–0·3Si–2Mn–3Ni–0·5Cr–0·6Mo (wt-%) were therefore characterised for a range of cooling rates using high resolution scanning electron microscopy, and transformation behaviour, assessed from cooling curves, is presented as a continuous cooling transformation diagram. As deposited last bead microstructure changes gradually from lower bainite and martensite interspersed with coalesced bainite, via a mixture of relatively fine upper and lower bainite, to coarse upper bainite as cooling rate decreases. The microstructure of reheated beads follows the as deposited structure closely and becomes coarse with slower cooling. Mechanical properties correlate with observed microstructure and transformation behaviour. Results suggest high strength and good toughness for cooling rates between 800 and 500°C of about 3–13 s. A fine microstructure will then form with varying proportions of martensite, lower bainite, coalesced bainite and fine upper bainite.  相似文献   

15.
Abstract

Current pulsing patterns are defined for the micro-tungsten inert gas welding apparatus developed and are described as: no pulsation (NP), high frequency pulsation (HFP), slightly hybrid pulsation (SHP), and heavily hybrid pulsation (HHP). The characteristics of the microarc behaviour and weld formation are then investigated in detail for these patterns. The parameters and pattern of the pulsating current dominate arcing power and arc stiffness at a given average current, thus affecting arc state and bead formation. The arc image analysis shows that the HFP and HHP arcs can burn more steadily even at an average current of 2 A because of the arc stabilising effect from the superimposed high frequency components. During the on time of the pulse, the state of the hybrid pulsating (HP) arc varies successively from an apple like shape to a cone with an increased taper. Furthermore, this HP arc shrinks owing to the decreases in the peak current and arcing power with increasing frequency of the base pulse, but is still much greater in size than the NP and HFP arcs. Finally, welding experimental results demonstrate that the HP welds are the widest and become narrow with an increase in the pulse frequency, and the NP and HHP beads are somewhat wider than the HFP and SHP beads respectively.  相似文献   

16.
Abstract

Commercial Al-2024 (T3) alloy was friction stir welded at various heat index (HI) values using bead on plate approach. Quantitative analysis using electron microscopy and differential scanning calorimetry (DSC) revealed a complex variation in the precipitation evolution of Guinier-Preston-Bagaryatskii (GPB) zone and Al2CuMg (S phase) precipitates in nugget and heat affected zone (HAZ). Differential scanning calorimetry data also suggested formation energy of GPB zone equal to ?236 J g?1. Tensile properties attained a maximum for HI values close to 3·94 in the nugget region, which was attributed to corresponding minimisation of the volume fraction of coarse S phase to the profit of GPB zone. The precipitation of fine S phase precipitates resulted in higher tensile properties in HAZ as compared to those in nugget for all HI values. Experimental data were used to determine major strengthening mechanisms by using constitutive relationships.  相似文献   

17.
Abstract

In order to clarify the effect of solidification velocity on the weld solidification process of alloy tool steel during the welding, the information about microstructure evolution was obtained by the concurrent experiments of liquid tin quenching and time resolved X-ray diffraction technique using intense synchrotron radiation. It was found from the experiments that the solidification mode was transferred from an FA to an A mode at the high solidification velocity. The effect of solidification velocity on the phase selection during solidification between the primary δ-ferrite and γ-austenite was theoretically proved by the Kurz, Giovanola and Trivedi (KGT) model. It is thus explained that the solidification cracking susceptibility of the weld metal of alloy tool steel was enhanced due to the δ to γ transition of the primary phase.  相似文献   

18.
Abstract

Weld joint dimensions and weld metal mechanical properties are important quality characteristics of any welded joint. The success of building these characteristics in any welding situation depends on proper selection-cum-optimisation of welding process parameters. Such optimisation is critical in the pulsed current gas metal arc welding process (GMAW-P), as the heat input here is closely dictated by a host of additional pulse parameters in comparison to the conventional gas metal arc welding process. Neural network based models are excellent alternatives in such situations where a large number of input conditions govern certain outputs in a manner that is often difficult to adjudge a priori. Six individual prediction models developed using neural network methodology are presented here to estimate ultimate tensile strength, elongation, impact toughness, weld bead width, weld reinforcement height and penetration of the final weld joint as a function of four pulse parameters, e.g. peak current, base current, pulse on time and pulse frequency. The experimental data employed here are for GMAW-P welding of extruded sections of high strength Al–Zn–Mg alloy (7005). In each case, a committee of different possible network architectures is used, including the final optimum network, to assess the uncertainty in estimation. The neural network models developed here could estimate all the outputs except penetration fairly accurately.  相似文献   

19.
Abstract

Metal–matrix composites reinforced with Al2O3 particles combine the properties of the matrix (ductility and toughness) with the ceramic properties of the reinforcements (high strength). However, their wide application as structural materials requires a proper development of their joint process. The present work describes the results obtained from microstructural (optical and scanning electron microscopy) and mechanical evaluation (hardness and tensile tests) of the welded aluminium–matrix composite (AA6061) reinforced with 10% and 20% volume fraction Al2O3 particles (W6A10 and W6A20, respectively) using the MIG (metal inert gas) welding process and ER5356 (AlMg5) as filler material. A characteristic of the welds carried out in composites is that the size of the melt pool is wider than in the unreinforced materials, for the same welding conditions. This is caused by the lower thermal conductivity of the composites. Furthermore, composites act as an insulator reducing the cooling rate of the bath. The thermal effect of welding on different types of joints results in a loss of the mechanical properties in the heat affected zones (HAZ). These properties can be recovered with post-welding heat treatment.  相似文献   

20.
Abstract

Type IV cracking refers to the premature failure of a welded joint due to an enhanced rate of creep void formation in the fine grained or intercritically annealed heat affected zone. A great deal of research effort has been directed at understanding the underlying mechanisms for this type of failure, but most have approached the problem from a metallurgical standpoint, and comparatively little effort has been directed at understanding the effects of welding variables. Here the effects of parameters such as the preheat temperature and heat input on the tendency for type IV failure in 9–12%Cr steels have been quantitatively estimated. These calculations have subsequently been verified experimentally to form the first systematic study of welding parameters on type IV cracking. The joint geometry and preheat temperature have been found to ameliorate type IV failures, while the effect of heat input is less significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号