首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To simulate the atmospheric corrosion of steels galvanized with Zn under different conditions, artificial zinc rusts of basic zinc salt (BZS) were prepared by hydrolyzing ZnO particles in aqueous solutions including ZnCl2, ZnSO4 and Zn(NO3)2. In ZnCl2–ZnSO4, ZnSO4–Zn(NO3)2 and ZnCl2–Zn(NO3)2–ZnSO4 systems, zinc hydroxysulfate (Zn4(OH)6(SO4nH2O) was formed while zinc hydroxychloride (Zn5(OH)8Cl2·H2O) was generated in ZnCl2–Zn(NO3)2 system. Zinc hydroxynitrate (Zn5(OH)8(NO3)2·2H2O) was yielded in only Zn(NO3)2 system. All the formed artificial zinc rusts were hexagonal plate particles. These results suggest that SOx is the most effective corrosive gas on the formation of BZS rusts on galvanized steel.  相似文献   

2.
The formation of corrosion products on Zn55Al coated steel has been investigated upon field exposures in a marine environment. The corrosion products consisted mainly of zinc aluminium hydroxy carbonate, Zn0.71Al0.29(OH)2(CO3)0.145·xH2O, zinc chloro sulfate (NaZn4(SO4)Cl(OH)6·6H2O), zinc hydroxy chloride, Zn5(OH)8Cl2·H2O and zinc hydroxy carbonate, Zn5(OH)6(CO3)2 were the first three phases were formed initially while zinc hydroxy carbonate Zn5(OH)6(CO3)2 was formed after prolonged exposure in more corrosive conditions. The initial corrosion product formation was due to selective corrosion of the zinc rich interdendritic areas of the coating resulting in a mixture of zinc and zinc aluminium corrosion products.  相似文献   

3.
The SO2-induced atmospheric corrosion of zinc was studied at 4, 14, 22 and 30 °C and 95% RH. Each sample was exposed individually to synthetic atmospheres with careful control of SO2 concentration (107 and 500 ppb), relative humidity and flow conditions. The initial reaction between SO2 and zinc was studied in a time-resolved manner. Two-week exposures were performed to measure the corrosion rate and study the formation of corrosion products. Corrosion products were analysed by X-ray powder diffraction and ion chromatography. The corrosion rate was inversely dependent on temperature, the maximum rate being found at the lowest temperature. SO2 deposition showed a similar trend with the highest deposition rate at 4 °C. At low temperature a thick film of ZnSO4(aq) formed on the metal surface, whereas zinc hydroxysulphate (ZnSO4 · 3Zn(OH)2 · 4H2O(s)) was the main corrosion product at 22 and 30 °C. The inverse temperature-dependence of the corrosion rate of zinc is proposed to be connected to the formation of sparingly soluble zinc hydroxy sulphate which slows down the deposition of SO2 on the surface.  相似文献   

4.
Zn-Al-Mg alloy (ZM) coating provides a decisively enhanced corrosion resistance in a salt spray test according to DIN EN ISO 9227 (NSS) compared to conventional hot-dip galvanised zinc (Z) coating because of its ability to form a very stable, well adherent protecting layer of zinc aluminium carbonate hydroxide, Zn6Al2(CO3)(OH)16·4H2O on the steel substrate. This protecting layer is the main reason for the enhanced corrosion resistance of the ZM coating. Surface corrosion products on ZM coated steel consist mainly of Zn5(OH)6(CO3)2, ZnCO3 and Zn(OH)2 with additions of Zn5(OH)8Cl2 · H2O and a carbonate-containing magnesium species.  相似文献   

5.
Corrosion behaviour of the high‐strength galvanized steel wires under tensile stress was researched by electrochemical polarization and salt spray test (SST) using simulated acid rain as electrolyte. Electrochemical polarization and SST results showed corrosion rate rose significantly with increasing tensile stress; white grains were observed by SEM after polarization, while cellular and dendritic crystals appeared on the rust layer after SST. XRD and TG‐DTA results revealed (Zn(OH)2)3 · ZnSO4 · 5H2O was the main corrosion product, and traces of Fe2(SO4)2O · 7H2O, Fe2(SO4)3, Fe2O3 · H2O were also detected. A three‐stage corrosion process for the galvanized steel wires during SST was proposed.  相似文献   

6.
The reactivity of zinc under synthetic zinc patinas and the galvanic coupling in steel/patina/Zn are studied. Zn5(OH)6(CO3)2 and Na2Zn3(CO3)4⋅3H2O inhibit zinc anodic dissolution in NaCl, while Zn5(OH)8Cl2 H2O and Zn4(OH)6SO4 nH2O do not. The galvanic current in steel/patina/NaCl/Zn is smaller as compared to steel/NaCl/Zn. The inhibiting effect decreases with time for Na2Zn3(CO3)4⋅3H2O or Zn4(OH)6SO4 nH2O due to the transformation into Zn(OH)2. In NaHCO3, the polarity between zinc and steel can reverse. The effect of confinement on the cathodic current is stronger than the initial effect of patina which is explained by the instability of the patinas under rapid pH-increase.  相似文献   

7.
Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc   总被引:1,自引:0,他引:1  
The influence of NaCl deposition on the corrosion of zinc in atmospheres with and without SO2 was studied via quartz crystal microbalance. Regularity of the initial corrosion of zinc under these conditions was analyzed. The results show that NaCl can accelerate the corrosion of zinc. Mass gain of zinc increases with the exposure time, which can be correlated by using exponential decay function. The relationship between mass gain and amount of NaCl deposition is well linear at any time in air containing 1 ppm SO2, but follows quadratic function in air without SO2. More amount of NaCl deposition will slow down the corrosion to some extent after exposure for certain time in the presence of SO2. The combined effect of NaCl and SO2 on the corrosion of zinc is greater than that caused by each single component. Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the corrosion products of zinc. In the absence of SO2, simonkolleite, Zn5(OH)8Cl2·H2O and zincite, ZnO are the dominant corrosion products, while zinc hydroxysulfate (Zn4SO4(OH)6·3H2O), zinc chloride sulfate hydroxide hydrate (Zn12(SO4)3Cl3·(OH)15·5H2O) and simonkolleite dominate in the presence of SO2. Brief discussion on the mechanisms of atmospheric corrosion under these conditions was introduced.  相似文献   

8.
Initial atmospheric corrosion of zinc in the presence of Na2SO4 and (NH4)2SO4 was investigated via quartz crystal microbalance(QCM) in laboratory at relative humidity(RH) of 80% and 25 °C. The results show that both Na2SO4 and (NH4)2SO4 can accelerate the initial atmospheric corrosion of zinc. The combined effect of Na2SO4 and (NH4)2SO4 on the corrosion of zinc is greater than that caused by (NH4)2SO4 and less than that caused by Na2SO4. Fourier transform infrared spectroscopy(FTIR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the corrosion products of zinc. (NH4)2Zn(SO4)2, Zn4SO4(OH)6·5H2O and ZnO present on zinc surface in the presence of (NH4)2SO4 while Zn4SO4(OH)6·5H2O and ZnO are the dominant corrosion products on Na2SO4-treated zinc surface. Probable mechanisms are presented to explain the experimental results.  相似文献   

9.
NaCl induced atmospheric corrosion of ZnAl2Mg2 coated, electrogalvanised (EG) and hot dipped galvanised (HDG) steel was studied using in situ infrared reflection absorption spectroscopy, XRD and SEM. Initial corrosion leads to the formation of Mg/Al and Zn/Al layered double hydroxides (LDHs) on ZnAl2Mg2, due to the anodic dissolution of Zn–MgZn2 phases and cathodic oxygen reduction on Zn–Al–MgZn2, Al-phases and on zinc dendrites. In contrast to EG and HDG, were no ZnO and Zn5(OH)8Cl2⋅H2O detected. This is explained by the buffering effect of Mg and Al which inhibit the ZnO formation, reduce the cathodic reaction and corrosion rate on ZnAl2Mg2.  相似文献   

10.
《Corrosion Science》1987,27(4):363-372
The surface film forming on Al brass specimens immersed in stagnant Na2SO4 solutions containing chlorides at pH values 3.0–7.25 was examined by using chemical, electrochemical and X-ray techniques. In the absence of chlorides the surface film consists of oxides (CuO, Cu2O) and cupric basic sulfates Cu3(SO4)2.4H2O, stable in the whole range of pH; the surface film is quite homogeneous and no dezincification or localized corrosion occurs. In the presence of chlorides, the surface film consists also of cuprous chloride (CuCl) and of cupric [Cu(OH,Cl)2.2H2O] and aluminum oxychlorides [Al45O45(OH)45Cl] and aluminum oxides (Al(OH)3]. The weight of the corrosion products is a maximum in solutions containing 5 × 10−3 M NaCl at each pH value. In the most acidic solutions the surface film is physically and chemically extremely unhomogeneous, thus favouring the occurrence of dezincification or localized corrosion phenomena.  相似文献   

11.
AC-induced corrosion is a controversial subject and many aspects of it need to be clarified, first and foremost, the mechanism and relationship between AC density and corrosion rate. This paper (Part 1) presents and discusses the effects of AC interference on kinetics parameters; the effects on corrosion rate and corrosion mechanism will be discussed in Part 2. Polarisation curves were obtained in different solutions (soil-simulating solution, 35 g L−1 NaCl, 1 M FeSO4, 1 M CuSO4 and 1 M ZnSO4) on different metallic materials (carbon steel, galvanised steel, zinc and copper) in the presence of AC interference (30-1000 A/m2).  相似文献   

12.
In the present paper, the identification of the corrosion product phases formed on copper under different atmospheres of Cuban tropical climate is reported. Cuprite (Cu2O), paratacamite (Cu2Cl(OH)3), posnjakite (Cu4SO4(OH)6 · 2H2O) and brochantite (Cu4SO4(OH)6) were the main phases identified by X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR).Copper corrosion products are known to have a protective effect against corrosion. However, a different behaviour was obtained under sheltered coastal conditions. This can be due to the corrosion products morphology and degree of crystallisation, rather than their phase composition. A higher time of wetness and the accumulation of pollutants not washed away from the metal surface can also play an important role.  相似文献   

13.
Corrosion products that had been formed on copper and silver plates exposed in Miyake Island, where suffered a volcanic eruption in 2000, were analyzed by X-ray techniques to get better understanding of copper and silver corrosion in harsh environment. The exposure experiment was carried out from September 2004 to April 2005. Many kinds of patina were found on copper such as cuprite (Cu2O), posnjakite (Cu4SO4(OH)6 · H2O), brochantite (Cu4SO4(OH)6), antlerite (Cu3SO4(OH)4), and geerite (Cu8S5). For silver, silver chloride (AgCl) and silver sulfide (Ag2S) were formed. Although the volcanic activity had greatly subsided, the atmospheric corrosion of copper and silver plates exposed on Miyake Island was mainly affected by volcanic gases, wet-dry cycles in the environment, and sea-salt aerosols.  相似文献   

14.
Electrochemical studies have been performed with the atmospheric corrosion monitor (ACM) under thin layers of electrolyte which were drying out at R.H. < 100%. Galvanic couples (Cu/steel, Cu/zinc) and one-metal (steel, zinc) ACMs were used. Measurements were carried out as a function of R.H. and Na2SO4 concentration. In addition, weight loss data were collected under identical conditions in thin layer experiments for steel and zinc in 0.01N solutions of NaCl, Na2SO4, HCl, H2SO4 and distilled H2O in air, air + 1 ppm SO2, argon and argon + 1 ppm SO2. The data obtained in air and air + SO2 were compared to weight loss results in bulk solutions.The electrochemical technique makes it possible to follow the changes of corrosion rates with time. As observed in outdoor exposure, a large increase of corrosion rates occurs when the electrolyte layers become very thin, shortly before the surface dries out. These findings explain the results of the weight loss data which show for most environments a much larger corrosion rate than in the bulk electrolyte. An accelerating effect of SO2 was observed for steel at higher R.H. values, while for zinc, no effect occurred in NaCl, Na2SO4 and H2SO4, but an inhibiting effect was measured in HCl and in distilled H2O.Since weight loss and electrochemical data were recorded under identical conditions, it is possible to determine how accurately the ACM data reflect the true corrosion rate. It was found for Cu/steel ACMs that the electrochemical data follow the same trends as the weight loss data, but account for only about 20% of the corrosion rate. Due to larger scatter in the weight loss data, a similar efficiency factor could not be determined for Cu/zinc. For steel and zinc ACMs, the true Tafel slopes are not known, which makes a calculation of corrosion rates doubtful. The low cell efficiency is considered to be due to local corrosion of single cell plates and to i.r.-drop effects.Despite the fact that exact corrosion rates cannot, at present, be obtained from ACM data, the technique appears very valuable for following the changes of atmospheric corrosion behaviour and for time-of-wetness measurements.  相似文献   

15.
Galfan coatings on steel in laboratory exposures with predeposited NaCl and cyclic wet/dry conditions exhibit nearly the same corrosion products as after 5 years of marine exposure. A general scenario for corrosion product evolution on Galfan in chloride-rich atmospheres is proposed. It includes the initial formation of ZnO, ZnAl2O4 and Al2O3 and subsequent formation of Zn6Al2(OH)16CO3⋅4H2O, and Zn2Al(OH)6Cl⋅2H2O and/or Zn5Cl2(OH)8⋅H2O. An important phase is Zn6Al2(OH)16CO3⋅4H2O, which largely governs the reduced long-term zinc runoff from Galfan. A clear influence of microstructure could be observed on corrosion initiation in the slightly zinc-richer η-Zn phase adjacent to the β-Al phase.  相似文献   

16.
《Corrosion Science》1987,27(7):669-684
Fourteen patinated copper specimens, seven each from the Statue of Liberty, New York Habor and from roofs at AT&T Bell Laboratories in Murray Hill, NJ, ranged in atmospheric exposure from 1 to 100 years. X-ray diffraction showed the presence of cuprite, Cu2O, and brochantite, Cu4(SO4)(OH)6, in all specimens and antlerite, Cu3(SO4)(OH)4 (up to 0.7 times brochantite), atacamite, Cu2Cl(OH)3 (up to 1.6 times brochantite), and/or posnjakite, Cu4(SO4)(OH)6 · 2H2O (up to 5.2 times brochantite) in some. Posnjakite has been previously reported as a patina component only once during short term exposures in Eurasia. It appears to be an early corrosion product which subsequently converts to brochantite. Mass spectrographic examination of gases emitted from heated patinas provides further information on patina composition, in particular on the presence of both carbonate and oxalate in widely varying ratios.  相似文献   

17.
Wet storage staining is a phenomenon that occurs on both zinc coated and 55% Al–Zn coated steel sheets during shipment or storage in damp conditions. Whereas zinc coated sheets form white corrosion products, 55% Al–Zn coated steel sheets form black corrosion products. The effect of temperature, pH and wet storage on the occurrence of black rust staining of unpassivated Aluzink samples has been investigated in the laboratory in terms of corrosion product formation and composition. A characterization of corrosion products formed has been performed mainly based on scanning electron microscopy with X-ray microanalyses (SEM/EDS) for morphological and quantitative analyses and X-ray diffraction techniques (XRD) for crystalline phase identification. Black rust formation is strongly related to alkaline pH regions and is enhanced by the temperature. All black panels show the presence of Bayerite (Al(OH)3), mainly formed on the aluminum rich dendrite branches and a basic zinc aluminum carbonate (Zn6Al2(OH)16CO3·4H2O) formed in the zinc rich interdendritic alloy regions in contact with air. Blackening of Aluzink surfaces is connected to differences in optical properties of embedded metallic zinc and/or aluminum particles of different shape and size in the corrosion layer.  相似文献   

18.
Sulfate bath having ZnSO4 · 7H2O, Fe2(SO4)3 · H2O and thiamine hydrochloride (THC) and citric acid (CA) in combination, represented as (THC + CA) was optimized for deposition of bright Zn-Fe alloy coating on mild steel. Bath constituents and operating parameters were optimized by standard Hull cell method, for peak performance of the coating against corrosion. The effect of current density (c.d.), pH and temperature on deposit characters, such as corrosion resistance, hardness and glossiness were studied and discussed. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods were used to assess the corrosion behaviors. Surface morphology, and composition of the coatings were examined using Scanning Electron Microscopy (SEM), interfaced with EDXA facility, respectively. The Zn-Fe alloy, with intense peaks corresponding to Zn(100) and Zn(101) phases, showed highest corrosion resistance, evidenced by X-ray diffraction (XRD) study. A new and cheap sulfate bath, for bright Zn-Fe alloy coating on mild steel has been proposed, and results are discussed.  相似文献   

19.
A method has been developed to characterize the passivation film formed on aluminum in marine atmosphere, whether polluted or not by sulphur oxides and fluorides The information thus obtained was integrated by X-ray diffractometric analyses. The following corrosion products were found in the marine atmosphere: Al2O3· 3H2O + Al (oxychoride) + Al (hydroxide) (The latter two compounds had not been revealed by X-ray analysis). The corrosion products found in the polluted atmosphere were: AlF3; Al2(SO4)3 · H2SO4; Al11(OH)30Cl3; AlF1.96(OH)1.4; 16Al(OH,F)3 · 6H2O; AlF1.65(OH)1.35 · H2O. Since the developed method provides useful quantitative information on the aluminum distribution between the various anions, it is deemed to be a useful tool to study the corrosion kineties and mechanism.  相似文献   

20.
Mineralogical studies were carried out to identify the causes of filter press plugging in two zinc plant purification circuits. In the first circuit, Kraft paper covers were used over the filter cloths. An extensive layer of basic zinc sulfate, Zn4(SO4)(OH)6.xH2O or Zn5(SO4)2)(OH)6.xH2O, precipitated on the surface of the Kraft paper and within the pores of the paper. In the second circuit, woven polypropylene cloth was used in the first-stage filter presses. The cloth was extensively covered by basic zinc sulfate, which also filled the relatively large pores in this type of material. An unwoven polypropylene cloth was used in the second-stage filter presses of this circuit. The significantly finer pores in this type of cloth appeared to be plugged by major amounts of zinc sulfate, ZnSO4.xH2O, that presumably crystallized because of the temperature-concentration conditions prevailing in that part of the circuit. For more information, contact T.T. Chen, CANMET, 555 Booth Street, Ottawa, Canada K1A 0G1: (613) 995-9490; fax (613) 996-9673; e-mail tchen@nrcan.gc.ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号