首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
The 5?mm thick Al–Mg–Si alloy was self-reacting friction stir welded using the specially designed tool at a constant rotation speed of 400?rev?min?1 with various welding speeds. Defect-free welds were successfully obtained with welding speeds ranging from 150 to 350?mm?min?1, while pore defects were formed in the weld nugget zone (WNZ) at a welding speed of 450?mm?min?1. Band patterns were observed at the advancing side of WNZ. Grain size and distribution of the precipitated phase in different regions of the joints varied depending on the welding speed. The hardness of the weld was obviously lower than that of the base metal, and the lowest hardness location was in the heat affected zone (HAZ). Results of transverse tensile tests indicated that the defective joint fractured in the WNZ with the lowest tensile strength, while the fracture location of the defect-free joints changed to the HAZ.  相似文献   

2.
ABSTRACT

The consequence of friction stir welding (FSW) and activated-gas tungsten arc welding (A-GTAW) processes on the evolution of microstructure and mechanical properties of 9Cr–1Mo (P9) steel to 316LN stainless steel dissimilar weld joint is investigated. The FSW specimen shows considerably higher tensile strength (~652?MPa) compared to A-GTAW specimen (~595?MPa) as well as its base metal of P9 (~642?MPa) and 316LN (~608?MPa) owing to the formation of tempered martensite and refined austenite in P9 and 316LN weld portion, respectively. The cross-weld tensile test revealed that the specimens failed in the base metal of 316LN SS for both FSW and A-GTAW process with ductile mode fracture. This study proves that FSW could be an alternate joining technique.  相似文献   

3.
Abstract

Hot rolled DH36 carbon steel, 6.4 mm in thickness, was friction stir welded at speeds of 3.4 mm s-1 (8 in min-1), 5.1 mm s-1 (12 in min-1), and 7.6 mm s-1 (18 in min-1). Single pass welds free of volumetric defects were produced at each speed. The relationships between welding parameters and weld properties are discussed. Optical microscopy, microhardness testing, and transverse and longitudinal tensile tests have been performed. Bainite and martensite are found in the nugget region of the friction stir welds whereas the base material is comprised of ferrite and pearlite. The maximum hardness is observed in the weld nugget, and the hardness decreases gradually from the weld nugget, through the heat affected zone, to the base metal. Tensile testing also indicates overmatching of the weld metal relative to the base metal. Maximum hardness and longitudinal (all weld metal) tensile strengths increase with increasing welding speeds. Weld transverse tensile strengths are governed by the base metal properties, as all transverse tensile bars fail in the base metal.  相似文献   

4.
新型9Cr-1Mo钢搅拌摩擦焊接头组织及性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用钨铼合金搅拌工具对新型9Cr-1Mo钢进行搅拌摩擦焊工艺试验,探讨焊缝成形、组织及性能变化规律. 结果表明,在300和400 r/min的转速,50 mm/min的焊接速度下可获得无缺陷接头;焊缝主要由搅拌区和热力影响区组成,具有明显的马氏体淬硬组织特征;高温热影响区为淬硬马氏体和回火马氏体混合组织,低温热影响区为过回火马氏体组织. 焊缝区具有晶粒细化特征,其晶粒尺寸约为母材69.2%. 焊缝区产生明显硬化,最高硬度约为母材硬度值的2.0倍. 焊接接头抗拉强度达到母材98%以上,搅拌区和热影响区冲击吸收能量分别达到母材的77.8%和87.4%,表明搅拌摩擦焊接头仍具有较好强韧匹配.  相似文献   

5.
Abstract

A413 is a high strength eutectic aluminium silicon cast alloy used in the food, chemical, marine, electrical and automotive industries. Fusion welding of these cast alloys can lead to problems such as porosity, microfissuring and hot cracking, etc. However, friction stir welding can be used to weld these cast alloys effectively, without defects. In this investigation, an attempt was made to optimise the friction stir welding process parameters for joining the cast aluminium alloy A413. Joints were made using four levels each of tool rotation speed, welding speed and axial force. The quality of the weld zone was analysed using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure. The joint fabricated using a tool rotation speed of 900 rev min?1, a welding speed of 75 mm min?1 and an axial force of 3 kN showed the best tensile strength.  相似文献   

6.
Full penetration friction stir welding was conducted on 12?mm thick reduced activation ferritic–martensitic steel at tool rotational speeds of 500 and 900?rev?min?1. Comparator welds at 500?rev?min?1 were also produced in 6?mm thick reduced activation ferritic–martensitic steel plate to evaluate section thickness effects. Increase in section thickness led to an increase in heat input, which strongly influenced the microstructure evolution in stir zone (SZ), thermo-mechanical affected zone and the overall hardness in the SZ of this steel. In the as-welded condition, the base metal microstructure was significantly altered and resulted in carbide-free grain boundaries. The desirable microstructure and mechanical properties were achieved by subjecting the as-welded joints to appropriate post-weld heat treatments.  相似文献   

7.
Abstract

A prominent benefit of friction stir welding process is to join plates with dissimilar material. In this study, an attempt is made to find effects of tool offset, plunge depth, welding traverse speed and tool rotational speed on tensile strength, microhardness and material flow in dissimilar friction stir welding of AA1100 aluminium alloy and A441 AISI steel plates. Here, one factor at a time experimental design was utilised for conducting the experiments. Results indicated the strongest joint obtained at 1·3?mm tool offset and 0·2?mm plunge depth when the tool rotational speed and linear speed were 800?rev min??1 and 63?mm min??1 respectively. The maximum tensile strength of welded joints with mentioned optimal parameters was 90% aluminium base metal. Fracture locations in tensile test at all samples were in aluminium sides. Owing to the formation of intermetallic compounds at high tool rotational speed, the microhardness of joint interface goes beyond that of A441 AISI steel.  相似文献   

8.
采用CO2激光对抗拉强度为600MPa,厚度1.4mm的DP钢进行焊接.研究焊接速度对焊缝外观和截面成形的影响、接头的组织特点、硬度、强度和成形能力.结果表明,激光功率相同,焊接速度较低时焊缝易产生气孔,焊接速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝区组织主要由马氏体构成,从焊缝、焊接热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝出现马氏体组织,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

9.
为了研究CO2激光-熔化极活性气体保护焊(MAG)复合焊接性能,采用CO2激光和CO2激光-MAG复合焊接590MPa级高强度钢,对其焊接接头的显微组织和力学性能进行了研究.结果表明,激光-MAG复合焊接的焊缝金属中,MAG电弧作用区主要为珠光体和贝氏体,激光作用区主要为马氏体;激光-MAG复合焊接的焊缝金属中Mo和Mn合金元素的分布具有不均匀性;激光和激光-MAG复合焊接的试件焊接接头拉伸性能完全满足要求,焊缝强度高于基体强度;激光-电弧复合焊缝金属在-60℃~+15℃试验温度范围内的冲击韧性比激光焊缝金属高;激光-MAG复合焊接焊缝金属硬度在250~400 HV之间,高于基体金属的硬度.  相似文献   

10.
Magnesium alloy AZ31B and pure copper T2 were lapped and joined by cold metal transfer (CMT) welding–brazing method by AZ61A magnesium alloy wire with a 1·2 mm diameter. Results indicated that a satisfied Mg/Cu CMT welding–brazing joint was obtained in the stable welding processes with no spatter. The joint was composed of Mg–Mg welding joint formed between the Mg weld metal and the Mg base metal, and Mg–Cu brazing joint formed between the Mg weld metal and the local molten Cu base metal. The microstructure and the intermetallic compound (IMC) distribution were inspected and analysed in detail. The interfacial reaction layers of the brazing joint consisted of Mg2Cu, Al6Cu4Mg5, MgCu2 and Mg17Al12 IMCs. The tensile shear strength of the Mg/Cu CMT welding–brazing joint could reach 172·5 N mm?1. In addition, two different fracture modes were observed: at the fusion zone and at the brazing interface.  相似文献   

11.
In the present work, a thick-sectioned multilayered steel structure was fabricated by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. Higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. Consequently, improved mechanical properties compared to the base metal were found in the weld zones of friction stir welded A516 Grade 70 steel.  相似文献   

12.
Abstract

Gas tungsten arc welding (GTAW) repair process and GTAW+FSW (friction stir welding) hybrid repair process are studied to remove the large size groove defect formed during FSW. The experimental results indicate that the groove defect can be removed by both the repair processes. The tensile strength of the GTAW repair joint is only 55% of that of the base metal. The tensile fracture occurs at the transition zone between the weld zone and the heat affected zone, and the fracture surface of the repair joint is characterised by clear brittleness. In contrast, the GTAW+FSW hybrid repair joint has a high tensile strength equivalent to 70% of that of the base metal. The tensile fracture occurs at the overlap thermomechanically affected zone between the two FSW nuggets, and the fracture feature of the hybrid repair joint is partially plastic and partially brittle.  相似文献   

13.
6061-T6 sheets with 0.8?mm thickness were successfully welded using high-speed friction stir welding (FSW) technology. The microstructural evolution and fracture behaviour of the joints were studied. The results show that sound joints could be obtained at the investigated high rotational speed of 8000?rev?min?1 and welding speeds of 300–1200?mm?min?1. Compared with conventional rotational speed, the grain size in the nugget zone (NZ) is obviously refined under high rotational speed. The Mg2Si, Al8Fe2Si and Al2CuMg precipitates reprecipitated adequately in the NZ during high-speed FSW, resulting in the number of the precipitates increased significantly, and further alleviating the weld softening. The difference in weld softening leads to different fracture characteristics during the tensile process. After artificial aging, the maximum welding softening in all joints is located in the heat affected zone, and the fracture is characterised by brittle fracture.  相似文献   

14.
Abstract

This paper aims to evaluate the formability of tailor welded blanks of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets. In this work, bead on plate butt joints of 2·5 mm DP600 and 1·2 mm TRIP700 steel sheets were performed using CO2 laser beam welding. Microhardness measurements and transverse tensile testing were carried out to characterise the welds. The formability of base metals and welds were investigated by standard Erichsen test. In a perpendicular tensile test to the weld line, all specimens were fractured at the TRIP base metal, and the strengths were somewhat higher than those of base metal. There was a significant reduction in formability caused by welding of the DP600/TRIP700 steel sheets, and the formability increased with increasing welding speed.  相似文献   

15.
深冲钢冷轧薄板压平缝焊接头的组织及力学行为   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

16.
采用有限元方法研究了焊后拉伸条件下高强度钢等匹配和低匹配对接接头内部应力的变化情况。结果表明,焊后横向和纵向拉伸载荷增至临界失效载荷期间,等匹配和低匹配接头的焊缝区和母材区应力均一直持续增加,但焊缝及近缝母材区应力在焊接残余应力基础上的增加较远端母材区缓慢;最终近缝母材区的应力明显高于远端母材区,未表现出内应力完全调匀的特征;这意味着由于焊接残余应力的存在,高强度钢宽板等匹配焊接结构的静载强度可能略有损失,而高强度钢宽板低匹配焊接结构更将在焊缝低强的影响下损失更大的静载强度。  相似文献   

17.
Weldability evaluation of high tensile plates using GMAW process   总被引:2,自引:0,他引:2  
High tensile plates, SAILMA-450 high impact (HI) (yield strength, 45 kg/mm2 minimum; ultimate tensile strength, 57 kg/mm2 minimum; elongation, 19% minimum; Charpy impact energy 2.0 kg.m at −20 °C minimum) were successfully developed at the Steel Authority of India Ltd., up to 32 mm plate thickness. Since then the steel has been extensively used for the fabrication of impellers, bridges, excavators, and mining machineries, where welding is an important processing step. The present study deals with the weldability properties of SAILMA-450 HI plates employing the gas metal arc welding process and carbon dioxide gas. Implant and elastic restraint cracking tests were conducted to assess the cold cracking resistance of the weld joint under different welding conditions. The static fatigue limit values were found to be in excess of minimum specified yield strength at higher heat input levels (9.4 and 13.0 kJ/cm), indicating adequate cold cracking resistance. The critical restraint intensities, K cr, were found to vary between 720 and 1280 kg/mm2, indicating that the process can be utilized for fabrication of structures involving moderate to low restraint intensities (200 to 1000 kg/mm2). Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 10 to 27 kJ/cm showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. These tests were repeated using machined plates, such that the midthickness of the plates (segregated zone) corresponded to the heat affected zone of the weld. No cracks were observed, indicating good lamellar tear resistance of the weld joint. Optimized welding conditions were formulated based on these tests. The weld joint was subjected to extensive tests to assess the physical properties and soundness of the weld joint. The weld joint exhibited good strength (64.7 kg/mm2) and impact toughness (5.7 and 3.5 kg.m at −20 °C for weld metal and heat affected zone properties. Crack tip opening displacement (CTOD) tests carried out for parent metal, heat-affected zone, and weld metal resulted in δm values of 0.41, 0.40, and 0.34 mm, respectively, which indicates adequate resistance to cleavage fracture. It was concluded that the weld joint conforms to the requirements of SAILMA-450 HI specification and ensures a high integrity of the fabricated products.  相似文献   

18.
Friction stir spot welding (FSSW) has been applied to a dissimilar metal lap joint of an aluminium alloy and steel by stirring only the upper aluminium alloy sheet. Therefore, FSSW cannot be used to weld a lap joint composed of three or more sheets and a lap joint with an adhesive interlayer. In the present work, we propose a novel spot welding process for dissimilar metal lap joints using a new tool with the tip made of spherical ceramics. When this process is applied to the lap joint of the aluminium alloy and steel, the tool can be plunged into the lower steel sheet, then a steel projection is formed in the aluminium alloy sheet. The height of this steel projection increases with the plunge depth, and accordingly, the weld strength increases; the tensile shear strength and the cross tensile strength reached about 3.6 and 2.3 kN/point, respectively.  相似文献   

19.
Abstract

A new technique of self-refilling friction stir welding (SRFSW) relying on non-consumable joining tool has been developed to repair the keyhole left at the end of 316L stainless steel friction stir welding/friction stir processing (FSW/FSP) seam. The conventional FSW process was transformed by adopting a series of non-consumable tools with gradual change in geometry to create a solid state refilled joint step by step. Using the combined plastic deformation and flow of the material around the keyhole, the SRFSW process is able to repair the keyhole with both metallurgical and mechanical bonding characteristics, and the FSW/FSP seam can be achieved without keyhole or other obvious macro defects. Microstructural observation results showed that the grains in the refilled zone were significantly refined by the tool. Tensile test results showed the refilled joint fractured at the base metal side, and the relative tensile strength and elongation are 112 and 82% of the base metal respectively. Moreover, no sigma phase but few Cr carbides were found in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.  相似文献   

20.
In this study, orbital friction stir lap welding of 360?mm diameter AA5083-H321 tube to 350?mm diameter AA5083-O flange was investigated. The influence of rotational and travel speed of tool with triangular frustum pin on the metallurgical structure and mechanical properties of orbital friction stir lap welded samples were studied. The results indicated that defect free orbital lap joints are successfully obtained using tool rotational speed of 650 and 800?rev?min?1 with a constant travel speed of 40?mm?min?1. The strengthening mechanism in the stir zone is solid solution strengthening and dislocation looping. The maximum joint strength was achieved at a welding speed of 650?rev?min?1 and 40?mm?min?1. Failure of tensile shear test samples occurred far from the friction stir welding zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号