首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this study, lap joints between AA5754 and DP1000 ultra-high strength steels were produced by friction stir welding. In order to investigate the roles of zinc on intermetallic phase formation and joint properties, steel substrates were used, two being galvanised coated and one uncoated. Joint performance has been evaluated in term of maximum tensile shear loading. The effects of the process parameter, translational speed; chemical compositions; and intermetallic phase formation on the mechanical properties have been investigated. The results show that joints with a galvanised layer exhibit higher strength as compared to the non-coated steel. A thicker galvanised layer promotes the presence of zinc in the aluminium matrix, resulting in better joint properties. The level of zinc contents in the aluminium matrix depends on process temperature and material circulation characteristics. Two stable Al-rich intermetallic phases, Al5Fe2 and Al13Fe4, were detected at the interface regardless of the coating conditions.  相似文献   

2.
蔡宁  张永强  王鹏博  王海全  鞠建斌  付参 《焊接》2021,(1):28-34,63
以DC01钢板与5082铝合金板为基材,在电极压力3 kN、焊接时间300 ms、保持时间100 ms条件下,研究了电阻点焊中焊接电流(9~12 kA)及Ni镀层对接头剪切力、正拉力、界面相组成的影响。结果表明,随焊接电流的提高,熔核尺寸增大,接头力学性能提高。剪切力比正拉力高一个数量级。在10 kA焊接电流下,镀Ni钢/铝接头的剪切力和正拉力均比钢/铝直接焊接时强度明显提高,这与钢/铝界面形成了Al 3Ni合金相,抑制了脆性Fe 2Al 5金属间化合物的生成有关。  相似文献   

3.
采用激光-MIG复合焊方法研究了铜对SYG960E超高强度度钢/6061铝合金焊接接头微观组织及力学性能的影响.结果表明,与MIG焊相比,激光-MIG复合焊有利于改善焊缝成形及焊接质量.钢/铝界面层具有双层结构,靠近铝焊缝侧为针状的FeAl3金属间化合物,而靠近钢母材侧为条状的Fe2Al5金属间化合物.铜对钢/铝界面层及接头的力学性能具有显著的影响.添加铜后可以有效地减小界面层厚度和裂纹敏感性,降低钢/铝接头的最高硬度,明显提高接头的抗拉强度,接头强度可以提高110%,这主要与铜抑制界面层生长和改善界面层中Fe-Al金属化合物的脆硬性有关.  相似文献   

4.
Dissimilar metal joints of galvannealed steel and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. In this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined. The compound layers in the weld interface were observed by optical microscope, and the layer thicknesses were measured. The thicknesses were in the range of 7–20 μm. The mechanical properties of welded joints were evaluated by the tensile shear test and the peel test. In the tensile shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to the laser beam of 1200–1400 W power under the roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. In order to know the reason for such high strength of joints with thick compound layers and the joining mechanism, the compound layer was observed by the HR-TEM. The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13, and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is assumed that the joining areas were heated in a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high strength joints with the relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   

5.
对0.2 mm厚的1060纯铝和TC4钛合金薄板进行了微电阻点焊试验,研究了焊接电流I、焊接时间T和电极压力F对接头力学性能的影响,采用扫描电子显微镜(SEM)和能谱仪(EDS)对点焊接头的连接特征及断裂行为进行了深入研究,采用微区射线衍射仪(micro-XRD)测定了焊点的物相组成。结果表明:在焊接电流为0.3 ~ 0.7 kA范围内,焊点的拉剪力随着焊接电流的增加先增加后趋于平稳,在焊接时间2~6 cyc范围内,焊接时间对焊点的拉剪力无显著影响,在电极压力为40~280 N范围内,随着电极压力增加焊点拉剪力先增加后降低;当I=0.7 kA、T=3 cyc、F=160 N时点焊接头的拉剪力最高为91 N,断裂发生在热影响区;1060/TC4异种金属微电阻点焊形成了共同的熔核,熔核与TC4之间界面较为平整,但是与1060的结合面呈凹凸不平,在熔核内部生成了AlTi3、Al2Ti和Al3Ti金属间化合物,焊核与铝侧界面处生成了针状化合物Al3Ti,对焊点的强度起到重要作用。  相似文献   

6.
Abstract

The authors welded magnesium alloy AZ31B sheets using the technique of resistance spot welding with cover plates, and investigated the effects of welding parameters on the tensile shear strength of joints and shape characteristic of nugget. The joints with high tensile shear strength were obtained under relatively low welding current. The equiaxed grains with the many intragranularly precipitated particles Mg17Al12 in the nugget were observed.  相似文献   

7.
Abstract

Fibre laser–cold metal transfer hybrid welding was introduced to join AA 6061 aluminium alloy with AISI 304 stainless steel using Al–12Si filler wire. Interface properties and microstructure of welded joints were observed by optical microscope, scanning electron microscope, energy dispersive spectrometry and X-ray diffraction techniques. A serrated intermetallic compound (IMC) layer was found at the interface between fusion zone and stainless steel. The morphology of IMC layer was uniform from the top to the bottom, and its average thickness was 3 μm. The IMC layer consisted of two layers: Al8(Fe,Cr)2Si layer close to fusion zone and (Al,Si)13Fe4 layer close to stainless steel. The joint fractured at the IMC layer and presented a tensile strength of 165 MPa. The formation of the IMC layer was closely related with the thermodynamic and kinetic behaviours of the interface and fast cooling rate of hybrid welding.  相似文献   

8.
通过搅拌摩擦搭接焊接6061铝合金/QP980钢异种材料,讨论了搅拌针长度(1.5和2.1 mm)对焊接接头组织和性能的影响。结果表明,6061铝合金/QP980钢搅拌摩擦搭接焊接头分为3层结构:上层为铝合金层,中间层为Fe、Al及金属间化合物混合层状结构,下层为钢层。其中,当搅拌针长2.1 mm时,铝合金层含有散落的钢碎片。在中间层检测到2种金属间化合物,靠近Al的深灰色层为Fe4Al13相,靠近钢的是Fe2Al5相。随着搅拌针长度的增加,接头的失效载荷从4 kN降低到3 kN。短探针焊接的接头在接合界面处断裂,而长探针焊接的接头在铝和钢的混合区断裂。孔洞缺陷和钢碎片是导致断裂位置发生变化的主要原因。此外,嵌入铝基体中的铁屑在变形过程中起应力集中和裂纹萌生的作用,降低了接头的力学性能。  相似文献   

9.
Laser pressure welding was conducted by changing the laser power and the roller pressure in the previous experiment. It was revealed that dissimilar metal welding of galvannealed steel and pure aluminium was feasible in a wide range of welding conditions. When the roller pressure was more than 1.96 kN at the laser powers equal to or less than 1400 W, the joint strengths were so high that the specimens in the tensile shear and the peel tests fractured in the A1050 parent metal.

In order to know the reason for such high strengths of joints with thick compound layers and the joining mechanism, the compound layer was observed by HR-transmission electron microscopy (TEM). The TEM observation results revealed that the main phase in the compound layer was the solid solution of Al + Zn. Moreover, the intermetallic compound was identified as FeAl, Fe2Al5, Fe4Al13 and Fe2Al5Zn0.4 phase by electron diffraction. The Fe3Zn10 (Γ phase) of Fe–Zn intermetallic compound was confirmed on a Fe base material. It is guessed that the joining areas were heated at a range of 782°C more than 665°C, a melting point of Al, by laser irradiation because the δlk phase aspect was not confirmed. Because the surfaces of A1050 and Zn plated layer were melted thinly, the layer was over 10 μm thicker. The reason for the production of high-strength joints with a relatively thick intermetallic compound layer was attributed to the formation of (Al + Zn) phase with finely dispersed intermetallic compounds.  相似文献   

10.
采用脉冲旁路耦合电弧MIG熔钎焊方法,分别采用4043,5356铝合金焊丝对5052铝合金/镀锌钢异种金属进行了搭接焊.通过扫描电镜(SEM),能谱仪(EDS),X射线衍射仪(XRD)对铝/钢连接界面、接头断裂行为及断口形貌进行了分析,发现5356铝合金焊丝焊接接头的润湿角要大于4043铝合金焊丝焊接接头的润湿角,合金元素Si既可改变界面反应层金属间化合物的形态同时还可显著减少Fe2Al5层的厚度.拉伸试验发现5356铝合金焊丝焊接所得接头主要断裂于界面反应层,属于脆性断裂;4043铝合金焊丝焊接所得接头主要断裂于熔合区,是以韧性断裂为主的混合断裂.通过对4043铝合金焊丝焊接所得接头进行显微硬度测试,发现热影响区组织的显微硬度明显低于其它区域的显微硬度,这导致4043铝合金焊丝焊接接头主要断裂于熔合区.  相似文献   

11.
S Sato 《Welding International》2013,27(12):943-948
Summary

This paper deals with the resistance spot weldability of steel to aluminium alloy using an intermediate layer of aluminium clad steel. Five types of clad sheet with various steel/aluminium thickness ratios were produced by hot rolling. The mechanical properties of the clad sheet changed with the thickness ratio and ranged between those of steel and:those of aluminium sheet. The peel strength of the steel/aluminium interfaces was greater than 25 N/mm.

Materials used in spot welding were 0.8 mm thick EDDQ steel sheet, three types of 1.0 mm thick aluminium alloy sheet and the clad sheet mentioned above. Spot‐weldability, including suitable welding current, nugget diameter, tensile shear strength and thickness of the intermetallic compound layer formed at the interface of the clad sheets, changed with the thickness ratio of the clad sheet. From these results, it was concluded that spot‐weldability was affected by the thickness ratio of the clad sheets.

Spot‐weldability was also affected by the alloying elements in the aluminium alloy sheet. Tensile shear strength and nugget diameter varied in various types of aluminium alloy sheet.  相似文献   

12.
Dissimilar joints of copper to aluminium were produced by high power ultrasonic welding (USW). The interfacial reaction between copper and 6061 aluminium alloy as a function of welding time was studied. The intermetallic compound (IMC) layer is mainly composed of CuAl2 and Cu9Al4. The thickness of the IMC layer increases with the welding time. For a relatively long welding time (0·7 s) in USW, the dendritic solidification microstructure was observed in local regions, owing to the occurrence of the eutectic reaction, α-Al+θ→L, in the welding process. The lap shear load (or strength) of the joints first increases and then decreases with increasing welding time, and the failure of the joints occurred dominantly at the interface. This is mainly attributed to the development of IMC layer at the interface.  相似文献   

13.
The successful results presented in the literature on friction stir welding (FSW) of aluminium–steel joints ignore the appearance and formation of defects on the joint as reference points for evaluation. It also increases the controversy about the presence of intermetallic compounds of the type FexAly, and the lack of information about its origin. The objective of this study is to determine appropriate parameters for obtaining aluminium–steel joints free of defects, and their relationship to the formation of deleterious phases during FSW. Consolidated welded joints were obtained and the microstructure resulting from these welded joints of aluminium alloy 6063-T5 and AISI steel SAE 1020 was determined. A tungsten carbide tool (WC-14Co) was used at rotation and weld speeds of 300 rpm and 150 mm min? 1, respectively. The results highlight the importance of heat input in obtaining aluminium–steel joints with adequate surface appearance and penetration. The microstructural analysis reveals the formation of seven regions in the welded joint, highlighting the thermo-mechanically affected zone on the steel, a band of ultra-fine grains of ferrite and the absence of intermetallic compounds on the aluminium–steel interface.  相似文献   

14.
The welding of Mg/Al dissimilar materials with different filler metal was investigated, and the quantities and kinds of intermetallic compounds were discussed. In addition, the matching degrees between base metal and intermetallic compounds were defined and calculated, and the effect of different quantities of each intermetallic compound on the property of welded seam was investigated. The results indicated that the welded seam was composed of Al3Mg2 and Al12Mg17 by Mg/Al directly gas tungsten arc butt welding, and only one intermetallic compound of MgZn2 formed in the welding seam using Zn and Zn–xAl filler metal. The tensile strengths of the joints increased with the increase of the matching degrees between the intermetallic compounds and the base metal when the welded seam contained different intermetallic compound. Meanwhile, the tensile strengths of the joints are decreased with the increase of intermetallic compound content when the welded seams contained the seam intermetallic compound.  相似文献   

15.
Dissimilar metal joints of Zn-coated Galvannealed steel (GA steel) and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. By this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined.

The compound layers in the weld interface were observed by an optical microscope and the layer thicknesses were measured. The thicknesses ranged from 7 to 20 μm. The mechanical properties of the welded joints were evaluated by the tensile-shear test and peel test. In the tensile-shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to a laser beam of 1200–1400 W power under roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. On the other hand, the specimen fractured in the weld interface at a laser power of 1500 W. The results of X-ray diffraction on the peel test specimen surface identified that the intermetallic compound on the GA steel side was Fe2Al5Zn0.4. Moreover, the aluminium parts adhering to the GA steel side were confirmed. These results suggest that the fracture in the peel test occurred between the compound layer and A1050 and partly in the base aluminium. A micro-Vickers hardness test was performed to examine the hardness distribution in the compound layer. The hardness values near A1050 and GA steel were about 100 and 470 Hv, respectively, which suggests that the compound layer should not necessarily consist of brittle intermetallic compounds. It is therefore concluded that laser pressure welding could produce high strength joints of GA steel and A1050 dissimilar materials.  相似文献   

16.
This paper presents results of joining of AA5754 and DP800 based on the friction stir welding process. Joints were produced by the tool made of H13 tool steel which was allowed to penetrate through the aluminium sheet until reaching the surface of steel sheet without penetrating into it. This approach is an economic and robust way to operate the dissimilar welding process without excessive tool cost. Bonding was achieved by interfacial diffusion reactions between aluminium and iron with a formation of intermetallic compounds. The formation of brittle intermetallic compounds at the interface between the materials was studied. Three intermetallic phases were found at the interface including Al13Fe4, Al5Fe2 and Fe3Zn10. A range of process parameters was identified with a thickness of the intermetallic layers around 2?µm. Shear fracture failure mode was observed under overlap loading. The mechanisms of formation of the joints and factors controlling the strength were discussed.  相似文献   

17.
采用脉冲旁路耦合电弧MIG熔钎焊方法用ER5356铝合金焊丝在镀锌钢板上进行平板堆焊试验.通过调整焊接参数获得最佳焊接成形,结果表明脉冲旁路耦合电弧MIG熔钎焊方法可以实现铝和铁异种金属材料的连接.采用SEM,EDS等测试手段观察和分析连接界面区的微观组织,在连接界面区形成Fe2Al5,FeAl3金属间化合物层.通过Thermo-Calc软件对Fe2Al5,FeAl3金属间化合物的吉布斯自由能进行计算,得出在高温Fe2Al5的吉布斯自由能比FeAl3的吉布斯自由能小,在低温FeAl3的吉布斯自由能比Fe2Al5的吉布斯自由能小,说明在焊接过程中Fe2Al5金属间化合物先生成,再在冷却过程中FeAl3金属间化合物生成或析出.  相似文献   

18.
采用电阻点焊方法对纯钛与低碳钢Q235进行焊接试验,利用扫描电子显微镜观察分析了熔核区组织特性,探讨了焊接电流对熔核尺寸和抗剪载荷的影响. 结果表明,受焦耳热的影响熔核直径随焊接电流的增加而增加,抗剪载荷则随焊接电流的增大而呈先升后降的变化趋势,焊接电流为8 kA时所得接头的抗剪载荷最大,约2.85 kN. 在钢侧熔核区观察到了靠近钢侧厚度约为30~50 μm的TiFe2+α-Fe共晶组织层和粗大TiFe柱状晶;钛侧熔核区主要由靠近钛侧约12 μm厚的TiFe+α-Ti共晶组织层和TiFe柱状晶构成,且观察到了宏观分层现象.  相似文献   

19.
采用热补偿电阻点焊的方法焊接铝合金A5052板,分析了焊接电流、焊接时间及电极压力等焊接参数对熔核尺寸与接头抗剪强度的影响,并分析了接头抗正拉强度与焊接电流的关系.铝合金的热补偿电阻点焊接头抗剪力及熔核直径随焊接时间延长而增大,随电板压力的增大而减小.当焊接电流为12kA时,接头拉剪力达到最大值,约5.5 kN.试验结...  相似文献   

20.
在保持固态条件下,分别变化加热温度、时间对铝/Q235钢爆炸焊接头进行加热处理.分析了接合界面区反应层形貌等微观特征,探讨了加热温度、加热时间对反应层厚度的影响,研究了接合界面金属间化合物的生长行为.界面反应物是由靠近铝合金侧的反应物为Fe4Al13和靠近钢侧反应物为Fe2Al5构成.金属间化合物层随着加热时间的延长而变厚.结果表明,金属间化合物的生长满足抛物线法则,其生长激活能为33.26 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号