首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The effects of strain induced martensite formation and grain size on the room temperature low cycle fatigue behaviour of AISI 304LN austenitic stainless steel were considered. Two grain sizes, namely, 60 and 350 μm, were developed via suitable solution annealing treatments. Microstructural changes before and after low cycle fatigue testing were identified. The martensitic transformation was studied using aferritescope, X-ray diffractometry, and optical microscopy. The mechanical response was correlated with the microstructural changes. Secondary hardening as well as a crossover in the strain–life plots for the two grain sizes resulted from martensite formation. Dislocation configurations depended on the strains imposed.

MST/1902  相似文献   

2.
Abstract

The strain induced martensite transformation in austenitic stainless steels is of considerable interest, because it results in materials with attractive combinations of strength and ductility. The present work examines the mechanical response for a variety of strain and temperature paths, and relates these to microstructural observations. New evidence of the detailed transformation sequence is presented, along with direct evidence of codeformation of the austenite and martensite. Using different deformation temperature sequences enables the transformation to be changed from one that is heterogeneous to one that propagates axially along the sample. The strain hardening that occurs due to combined plasticity and martensitic transformation results in high kinematic hardening that is revealed by microstructural observations here, and which are linked directly to the mechanical response of these materials described in Part II of the present work.  相似文献   

3.
Abstract

Modern gas turbine engines require high performance materials and coatings to ensure high efficiency. The selection of high performance materials and coatings depends on the nature and concentration of alloying elements. The composition of materials and coatings, in particular, plays a major role in enhancing the life of gas turbine engines by exhibiting good resistance to oxidation and hot corrosion, which are major problems in gas turbine engines. The performances of several superalloys containing different alloying elements and MCrAlY type coatings containing a variety of major and minor alloying elements are described in detail. The effect of major and trace elements on the life of superalloys and coatings in the presence of pure Na2SO4, NaCl and vanadium containing environments is detailed. The relevant reaction mechanisms leading to the failure of superalloys and coatings are discussed. The major factors involved when selecting alloying elements for the preparation of superalloys to manufacture components intended for use under hot corrosion conditions and the selection of appropriate coatings are suggested. Finally, the necessity of innovation of 'smart coatings' to combat both oxidation and hot corrosion is discussed.  相似文献   

4.
Abstract

The tensile flow stress data for a 15Cr - 15Ni - 2.2Mo - Ti modified austenitic stainless steel in the temperature range 300 - 1023 K and in the strain rate range 6.3 × 10-5- 1.3 × 10-2 s-1 was analysed in terms of the Ludwigson and Voce equations. It was found that the Ludwigson equation described the flow behaviour adequately up to the test temperature of 923 K, whereas the Voce equation could be employed over the full temperature range. The peaks/ plateaus observed in the variation of these parameters as a function of temperature and strain rate in the intermediate temperature range have been identified as one of the manifestations of dynamic strain aging (DSA). Also the variation of these parameters with temperature and strain rate could clearly bring out the different domains of DSA observed in this alloy. The work hardening analysis of the flow stress data revealed that, in the DSA regime, the onset of stage III hardening is athermal.  相似文献   

5.
Abstract

AISI 316L austenitic stainless steel was deformed at different strain and strain paths. The twin boundaries in the deformed microstructure had two possible origins: decay of original annealing twins and generation of deformation twins. Assuming that rotations of grains, specifically grains on both sides of a twin boundary, are responsible for the twin decay, a simple model was proposed to bring out the domain of relative twin generation. A biaxial strain path, in general, was associated with strong twin generation – an association or dependency linked to the texture estimated values of Taylor factor. Formation of strain induced martensite was also observed to be strain and strain path dependent and was more in biaxial strain path.  相似文献   

6.
Abstract

The influence of boron on the hot ductility of C-Mn-Al-Cr steel has been investigated. At <980°C M(CB)3 precipitated out and about half of the boron content was in solution in austenite at >900°C. It was found that solute boron atoms segregate to austenite grain boundaries and occupy the vacancies induced by deformation. This prevents the formation and propagation of microcracks at boundaries and results in improved hot ductility and a reduced dynamic recrystallisation temperature.  相似文献   

7.
Abstract

The present work aims at studying structure–property correlations in an explosively clad HSLA steel with austenitic stainless steel of AISI 304L grade. The clad plate was subjected to hot rolling followed by a quenching and tempering treatment to achieve better mechanical properties in the base plate. Optical microscopy studies revealed that the interface between the two steels was wavy in the as clad plate and the waviness decreased substantially due to hot rolling. Subsequent heat treatment has not shown any significant effect either. The base plate had tempered martensite/bainite structure in as clad or heat treated conditions and ferrite-pearlite-bainite structure in hot rolled condition. The grains were finer and elongated near the interface. The stainless steel exhibited equiaxed grain structure in as clad, hot rolled or heat treated plates. Tensile properties and charpy impact energy of the base plate were lowered due to hot rolling and then increased substantially due to heat treatment. The microhardness was observed to be a maximum at the bond interface for all three conditions studied. The shear bond strength was the highest in the as clad condition and decreased for the rolled as well as heat treated conditions. Scanning electron microscopy fractography on shear bond specimens revealed the presence of predominantly equiaxed dimples with few regions of rubbed fracture. Quantitative electron probe microanalysis across the bond interface indicated linear change in concentrations of nickel, chromium and manganese between the levels appropriate to the clad layer and base metal.  相似文献   

8.
Abstract

Self-propagating high temperature synthesis (SHS) is a process whereby reactants are ignited to spontaneously transform to products in an exothermic reaction. The aim of this study is to propose a method to join nickel aluminide with AISI 316 stainless steel by SHS and to study the combustion synthesis of nickel aluminide. From the heat of combustion synthesis junctions were formed between annular AISI 316 stainless steel and a powder metallurgy compact of Ni and Al blends. The Al mole ratio for testing the joining grade in the initial powder mixture varied from 25 at.-% to 40 at.-%. In order to check the sufficiency of the SHS reaction, the test temperature was compared with the thermodynamic calculation values. The metallographic analysis indicated that NiAl and Ni3Al were formed in the joint layer.  相似文献   

9.
Room temperature tensile test results of solution annealed 304 stainless steel at strain rates ranging between 5 × 10−4 and 1 × 10−1 s−1 reveal that with increase in strain rate yield strength increases and tensile strength decreases, both maintaining power–law relationships with strain rate. The decrease in tensile strength with increasing strain rate is attributed to the lesser amount of deformation-induced martensite formation and greater role of thermal softening over work hardening at higher strain rates. Tensile deformation of the steel is found to occur in three stages. The deformation transition strains are found to depend on strain rate in such a manner that Stage-I deformation (planar slip) is favoured at lower strain rate. A continuously decreasing linear function of strain rate sensitivity with true strain has been observed. Reasonably good estimation for the stress exponent relating dislocation velocity and stress has been made. The linear plot of reciprocal of strain rate sensitivity with true strain suggests that after some critical amount of deformation the increased dislocation density in austenite due to the formation of some critical amount of deformation-induced martensite plays important role in carrying out the imposed strain rate.  相似文献   

10.
Abstract

The influence of nitrogen content on the tensile flow behaviour of type 316 LN austenitic stainless steel has been studied. Nitrogen content in the steel has been varied in the range 0·07 to 0·22 wt-%. Tensile tests were carried out over the temperature range of 300–1123 K at a nominal strain rate of 3×10?3 s?1. The tensile flow behaviour of the steels has been analysed based on the constitutive equation proposed by Voce. The Voce’s parameters of initial stress (σi) and saturation stress (σs) were found to increase linearly with increase in nitrogen content at all the test temperatures. Tensile properties of the steels were predicted from Voce constitutive equation parameters.  相似文献   

11.
Abstract

A relationship between ferrite grain size, cooling rate from austenitising temperature, austenitising time, and austenitising temperature is developed to predict the ferrite grain size of a low carbon steel. The coefficients of that relationship are determined experimentally. A Hall - Petch relationship is used to predict the yield stress and fracture stress from the predicted ferrite grain size. Considering the experimental results, maximum errors of 12.5% and 6.5% were found in the prediction of ferrite grain size and strengths, respectively.  相似文献   

12.
Abstract

The room temperature plastic deformation behaviour of two different batches (with differences in chemical composition) of 316L austenitic stainless steel has been studied. By thermomechanical treatments, a wide range of grain sizes varying from 2·7 to 64·0 νm was obtained in this study. The different microstructural parameters, such as grain size, distribution of grain size and shape, dihedral angle distribution, and grain aspect ratio were measured for annealed and deformed specimens of the two batches. The Hall–Petch behaviour of batch 1 showed two distinctly different linear regions, one in the fine grain size range (d≤6νm) and the other in the coarse grain size range (d6νm). The Hall–Petch parameter K H (?) was significantly higher in the fine grain regime than coarse grain regime at all strains. Hardness measurements were also performed across the grain at different strain levels. The applicability of the Hall–Petch relationship was assessed in batch 1 and batch 2. It was observed that the Hall–Petch relationship was applicable in the coarse grain regime and Kocks composite relationship in the fine grain regime of batch 1. In batch 2 of 316L austenitic stainless steel, a single linear Hall–Petch relationship could describe the deformation behaviour over the entire range of grain size (from 2.9 to 46 νm) studied. The variation of the Hall–Petch and Kocks composite parameters with strain was discussed in terms of changes in the microstructural parameters.  相似文献   

13.
An experimental study addressing the effect of tensile deformation on recrystallized grain size has been undertaken to explore the conditions leading to abnormal grain growth in Type 316H austenitic stainless steel. Following a solution heat treatment, a Type 316H stainless steel has been subjected to various tensile deformations up to a maximum of approximately 50% strain and then heated at a temperature of 1150 °C for 0.5 h followed by furnace cooling. A fraction of abnormally large grains is observed following a prior strain of approximately 20%. The results are presented, in terms of standard statistical analysis, and also graphically. The graphical presentation provides a clear, visual appreciation of uni- and bi-modal distributions, which may be of general help in other analyses of this nature.  相似文献   

14.
The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release.  相似文献   

15.
Abstract

Optical and transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis of bulk extracted precipitate residues were carried out on long term (more than 80 000 h) creep tested (at 1023 K) type 304 austenitic stainless steels with different levels of Ti content to assess the microstructural stability and creep strength. B and Ce were added to the steels to suppress the creep cavitation. Finer Ti(C,N) particles with higher density and narrower size distribution were observed in steels with a higher Ti content, resulting in an increase in the creep rupture strength. However, higher Ti content increased the intergranular precipitation of the σ phase on longer creep exposure, resulting in the increase in creep cavitation and in the decrease in creep rupture strength. The study indicated an optimum level of Ti and {C + (6/7)N} content with the Ti/{C + (6/7)N} ratio close to the stoichiometric value of the Ti(C,N) precipitate particles that should also be close to their solubility limit at the solution heat treatment temperature.  相似文献   

16.
The effect of 20% prior cold work on low cycle fatigue (LCF) behaviour of type 316L(N) stainless steel (SS) was studied at 873 K by conducting total axial strain controlled tests in air with strain amplitudes in the range ±0.25% to ±1.0%. The cyclic deformation behaviour of 20% prior cold worked (PCW) material was compared with the LCF response of solution annealed (SA) alloy tested under similar conditions. The cyclic stress response (CSR) of 316L(N) SS in the PCW condition was characterized by a short period of hardening followed by prolonged softening prior to failure, whereas SA material exhibited a significant hardening regime followed by stress saturation. Interrupted tests on PCW material were carried out at different stages of CSR in order to determine the underlying mechanisms as reflected in substructural changes. The fatigue life in the solution annealed condition was similar to that of the PCW material at higher strain amplitudes of testing (≥±0.5%) while at lower strain amplitudes, the PCW material exhibited longer life.  相似文献   

17.
Strain-controlled low cycle fatigue tests have been conducted in air between 298–873 K to ascertain the influence of temperature on LCF behaviour of nitrogen-alloyed type 316L stainless steel. A strain amplitude of ± 0.60% and a symmetrical triangular waveform at a constant strain rate of 3 × 10−3 s−1 were employed for all tests. Crack initiation and propagation modes were evaluated, and the deformation and damage mechanisms which influence the cyclic stress response and fatigue life identified. The cyclic stress response at all temperatures was characterized by an initial hardening to the maximum stress, followed by gradual softening prior to attaining saturation. Temperature dependence of fatigue life showed a maximum in the intermediate temperature range. The drastic reduction in fatigue life at elevated temperatures has been ascribed primarily to the combined influence of dynamic strain ageing effects and oxidation-enhanced crack initiation, while the lower life at room temperature is attributed to detrimental effects associated with deformation-induced martensite.  相似文献   

18.
Abstract

The true stress (σ)–true plastic strain (?) data of a type 316LN austenitic stainless steel tested at nominal strain rates in the range 3×10-5–3×10-3 s-1 and temperatures of 300–1123 K were analysed in terms of flow relationships proposed by Hollomon, Ludwik, Swift, Voce, and Ludwigson. The applicability of the particular flow relationship is discussed in terms of ‘complete’ and ‘applicable’ range fits of the experimental σ? data. At all strain rates, in the case of the complete range fit, the Ludwigson equation followed the stress–strain data most closely at 300 K, while in the temperature range 523–773 K, the flow behaviour was described equally well by both the Ludwigson and Voce equations. In the temperature range 823–1023 K, the Voce equation described the flow behaviour most accurately in the case of the complete range fit of σ? data at all strain rates. The analysis of σ? data employing the Ludwigson equation in the applicable range fit covering low and intermediate strains, and the Hollomon equation at high strains provided close simulation of the observed flow behaviour in the temperature range 823–1023 K. At high temperatures of 1073 and 1123 K, the Ludwigson equation reduces to the Hollomon equation. The variations in different flow parameters of the Ludwigson and Voce equations with temperature and strain rate exhibited anomalous behaviour at intermediate temperatures because of dynamic strain aging.  相似文献   

19.
The effects of wire brush hammering on low cycle fatigue behaviour of AISI 316 austenitic stainless steel has been investigated on turned samples through an experimental study combining strain controlled fatigue tests, scanning electron microscope examination and X‐ray diffraction analysis. An increase in fatigue life by 266% was reported at an imposed strain amplitude of Δεt/2 = 0.2%. This improvement is limited to Δεt/2 ≤ 0.5%. It is found that wire brush hammering produces a surface texture that favours, under cyclic loading, nucleation of randomly dispersed short cracks of the order of 50 µm in length stabilized by a compressive residual stress field. In contrast, turned surface showed much longer unstable cracks of the order of 200 µm in length nucleated in the machining groves and propagated under the effect of a tensile residual stress field. It has also been established that wire brush hammering can be used as intermittent treatment to improve the residual fatigue life of components subjected to cyclic loading. The treatment is very efficient if it is performed at a fraction of service lifetime ni/Nr lower than 0.5.  相似文献   

20.
Abstract

The effects of solution treatment (ST) temperature (1073–1473 K) on the prior austenite grain size, microstructure, and mechanical properties of a 2000 MPa grade 18%Ni Co free maraging steel have been investigated. The results show that prior austenite grain size normally increases with increase of ST temperature. Strength and ductility in the solution treated condition are independent of both ST temperature and prior austenite grain size due to constant martensite lath spacing and dislocation tangles. In the solution treated + aged condition, the relationship between yield strength and prior austenite grain size follows the Hall- Petch equation, and ductility improves until the ST temperature used is >1373 K. Accordingly, the fracture mode transforms from intergranular to transgranular at a critical prior austenite grain size of ~ 150 μ m, because of severe segregation of Ni3(Mo,Ti) and reverted austenite at prior austenite grain boundaries and martensite lath boundaries. The variation of Charpy V notch impact energy with increase of ST temperature in both the solution treated and solution treated + aged conditions is similar to that of the tensile ductility. The fracture toughness KIC, however, increases with increase of ST temperature. No thermal embrittlement resulted from the Ti(C,N,S) inclusion segregation at prior austenite grain boundaries and martensite lath boundaries in the high temperature solution treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号