首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guo  Yue  Zhang  Jianhai  Zhao  Hongwei 《Journal of Materials Science》2021,56(24):13429-13478

Al–Zn–Mg–Cu alloys can be fabricated by a series of thermo-mechanical processing methods (e.g., hot rolling, forging and extrusion), which is able to serve in aeronautic, automobile, and marine industries because of its excellent physical properties. However, reaching the balance between high strength and favorable ductility to present its high performance is still in progress, during which temperature and strain rate are two very important external variables. More importantly, the core lies in sophisticated microstructure evolution paths involved in hot deformation, which consists of different microstructure mechanisms and behaviors and can be expressed as various mechanical responses. Therefore, a fundamental review of microstructure mechanisms and behaviors, microstructure evolution and relevant mechanical responses of Al–Zn–Mg–Cu alloys during high-temperature deformation is of great significance. In present paper, first, various experimental methods have been introduced. Second, general trends of mechanical properties changing with temperature and strain rate have been summarized. Third, major microstructure mechanisms and behaviors have been discussed. Then, a schematic illustration originating from dislocations’ movement has been depicted, which succeeding microstructure evolution and mechanical responses (including superplasticity) have been reviewed accordingly. Finally, further suggestions of hot deformation of Al–Zn–Mg–Cu alloys have been given.

  相似文献   

2.
The present study investigated how nitrogen affected the high-temperature deformation and microstructural evolution of biomedical Ni-free Co–Cr–W alloys during hot deformation. Hot compression tests of undoped and N-doped Co–28Cr–9W–1Si–0.05C (mass%) alloys were performed at deformation temperatures ranging from 1323 to 1473 K at strain rates of 10−3 to 10 s−1. The microstructures, which were subjected to a true strain of 0.92 (60% in compression), were characterized using electron backscatter diffraction (EBSD) analysis and transmission electron microscopy (TEM). Dynamic recrystallization (DRX) was found to occur in both alloys during hot deformation. The grain size (d) decreased considerably with an increase in the Zener–Hollomon (Z) parameter. Although adding nitrogen to the alloys barely affected dynamic-recrystallization-induced grain refinement, it increased the magnitude of the flow stress and delayed static recrystallization during post-deformation cooling. Consequently, the N-doped alloy contained bulk nanostructures whose average grain size was 0.9 μm.  相似文献   

3.
4.
Abstract

Plane strain compression tests have been carried out at strain rates between 0·5 and 10 s?1 and temperatures in the range 275–510°C, both under nominally isothermal conditions and with temperature decreasing. Also, temperature or strain rate have been changed in the interval between two deformations. In all cases, the stress–strain curves obeyed a mechanical equation of state, described by constitutive relationships in terms of strain and instantaneous value of Zener–Hollomon parameter Z. When the value of Z varies slowly during deformation, flow stress is uniquely related to subgrain size and to dislocation density within subgrains, but these relationships break down in transition structures developed after a change of Z between two deformations. The existence of an equation of state for mechanical behaviour, but not for microstructure, is considered to result from important contributions of both dislocation velocity and density to hot strength.

MST/1066  相似文献   

5.
Abstract

In this paper, the levels of residual stress in the vicinity of linear friction welds in Ti–6Al–4V (Ti-64), a conventional αβ titanium alloy, and Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near α titanium alloy with higher temperature capability, are mapped and contrasted. The alloys have significantly different high temperature properties and the aim of this work was to investigate how this might affect their propensity to accumulate weld residual stresses and their response to post-weld heat treatment. Measurements are reported using high energy synchrotron X-ray diffraction and the results are compared to those made destructively using the contour method. The strain free lattice plane d 0 variation across the weld has been evaluated using the biaxial sin2Ψ technique with laboratory X-rays. It was found that failure to account for the d 0 variation across the weld line would have led to large errors in the peak tensile stresses. Contour method measurements show fairly good correlation with the diffraction results, although the stresses are underestimated. Possible reasons for the discrepancy are discussed. The peak tensile residual stresses introduced by the welding process were found to be greater for Ti-6242 (~750 MPa) than for Ti-64 (~650 MPa). Consistent with the higher temperature capability of the alloy, higher temperature post-weld heat treatments have been found to be necessary to relieve the stresses in the near α titanium alloy compared to the α+β titanium alloy.  相似文献   

6.
The work-hardening effect and strain-rate sensitivity behavior during hot deformation have been quantitatively investigated in this present paper. Isothermal compression experiment of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy has been conducted for verification. Linear relationship between work-hardening rate and true strain/stress has been derived from Kocks–Mecking dislocation relation. The work-hardening effect shows two obvious stages with strain: steady fluctuations and linear decreasing. Obvious work-hardening effect could be demonstrated under lower temperatures and higher strain rates. The work-hardening decrease at linear-decreasing regime becomes more stronger with temperature elevated and rate lowered, reverse-proportional to Zener–Hollomon parameters. Strain-rate sensitivity coefficient for hot deformation was decomposed into three parts from JMAK recrystallization kinetics. The influence of strain rate on DRX evolution has been termed as the major factor determining strain-rate sensitivity. Strain-rate sensitivity coefficients for steady-state deformation (ɛ = 0.7) of Ti–5Al–5Mo–5V–1Cr–1Fe alloy have been characterized as a function of deformation parameters and strain-rate sensitivity has been identified more obvious with temperature elevated and rate lowered.  相似文献   

7.
8.
The constitutive behaviors of Mg–Al–Zn magnesium alloys during hot deformation were studied over a wide range of Zener–Hollomon parameters by consideration of physically-based material’s parameters. It was demonstrated that the theoretical exponent of 5 and the lattice self-diffusion activation energy of magnesium (135 kJ/mol) can be used in the hyperbolic sine law to describe the flow stress of AZ31, AZ61, AZ80, and AZ91 alloys. The apparent hyperbolic sine exponents of 5.18, 5.06, 5.17, and 5.12, respectively for the AZ31, AZ61, AZ80, and AZ91 alloys by consideration of deformation activation energy of 135 kJ/mol were consistent with the considered theoretical exponent of 5. The influence of Al upon the hot flow stress of Mg–Al–Zn alloys was characterized by the proposed approach, which can be considered as a versatile tool in comparative hot working and alloy development studies. It was also shown that while the consideration of the apparent material’s parameters may result in a better fit to experimental data, but the possibility of elucidating the effects of alloying elements on the hot working behavior based on the constitutive equations will be lost.  相似文献   

9.
Compound rolling, which uses two different roller profiles to create plastic strain variation in the surface of a material, is described in this study. Based on the local load theory, equipment for the plastic deformation on the surface of the rectangular billet has been produced. The compound rolling behavior of Ti–50Al billet has been studied using this equipment. In order to study the deformation distribution of compound rolling, the flow net method for strain measurement has been employed. The deformation differences between compound rolling and flat rolling have been investigated with the commercial finite element method (FEM) code DEFORM-3D. The microstructure and the hardness from the surface to the center of the Ti–50Al billet developed through compound rolling has been characterized. These results indicate that the compound rolling technique results in severe plastic deformation near the surface with limited strain towards the center of the billet. This can result in compound microstructures, with fine recrystallized grains in the near surface region and the original directionally solidified microstructures in the center, and improve the hardness on the surface of the billet significantly.  相似文献   

10.
Abstract

The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti–3Al–5Mo–5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.  相似文献   

11.
A compressive split-Hopkinson pressure bar apparatus and transmission electron microscopy (TEM) are used to investigate the deformation behaviour and microstructural evolution of Ti–15Mo–5Zr–3Al alloy deformed at strain rates ranging from 8 × 102 s−1 to 8 × 103 s−1 and temperatures between 25 °C and 900 °C. In general, it is observed that the flow stress increases with increasing strain rate, but decreases with increasing temperature. The microstructural observations reveal that the strengthening effect evident in the deformed alloy is a result, primarily, of dislocations and the formation of α phase. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. Additionally, the square root of the dislocation density varies linearly with the flow stress. The amount of α phase increases with increasing temperature below the β transus temperature. The maximum amount of α phase is formed at a temperature of 700 °C and results in the minimum fracture strain under the current loading conditions.  相似文献   

12.
Abstract

The hot deformation behaviour and microstructural evolution of a near-α titanium alloy (Ti–5·6Al–4·8Sn–2Zr–1Mo–0·35Si–0·7Nd) containing 0·06%C or 0·3%C with bimodal or Widmanstätten starting microstructures were investigated using isothermal compression test at strain rates of 0·01–10 s?1 in the α+β or β regions. In the α+β region, both alloys exhibited continuous flow softening. The globularisation of transformed β structure or the recrystallisation of globular α phase took place, which was more remarkable in the 0·3%C alloy. In the β region, both alloys exhibited steady-state flow behaviour. Dynamic recrystallisation of the β phase occurred in the 0·06%C alloy, while was absent in the 0·3%C alloy. Due to the solution hardening of carbon atoms for the phases and the pinning effect of the carbides on grain boundary, the apparent activation energies of the 0·3%C alloy are higher than those of the 0·06%C alloy in the corresponding α+β or β phase regions.  相似文献   

13.
Abstract

Structural observations and hot deformation tests were carried out on mechanically alloyed Al-10 wt-%V2 O5 composite. Initial annealing experiments revealed a hardening of the material during the first stage of annealing. The material hardness increased from 114 HB for as extruded material to 167 HB after annealing at 873 K for 6 h. Differential scanning calorimetry tests conducted on as extruded material confirmed the development of an exothermic reaction during heating of the material within the temperature range 650–870 K. The amount of heat released was reduced with increasing annealing time at 873 K. Transmission electron microscopy (TEM) and X-ray analysis of annealed material revealed new intermetallic grains and very fine aluminium oxide particles, which resulted from the chemical reaction between the aluminium matrix and vanadium oxides. The development of voids in long aged specimens was found to be an undesirable effect of local specific volume reduction during the course of the chemical reaction that was not fully compensated by the local volume increase due to the growth of intermetallic particles. As a result, the material hardness was reduced in long time annealed specimens. The mechanical properties of as extruded and annealed specimens were investigated by means of hot compression testing within the temperature range 623–903 K. These tests revealed that the flow stress of as extruded material was reduced from 180 to 22 MPa when tested at 623 and 903 K, respectively. Annealed specimens exhibited higher flow stresses of 195 and 32 MPa at the same temperatures. The results indicate that the strength of the material can be effectively increased owing to a change of material structure as a result of the chemical reaction taking place during high temperature annealing.  相似文献   

14.
The high temperature flow behavior of as-extruded Ti–47.5Al–Cr–V alloy has been investigated at the temperature between 1100 °C and 1250 °C and the strain rate range from 0.001 s 1 to 1 s 1 by hot compression tests. The results showed that the flow stress of this alloy had a positive dependence on strain rate and a negative dependence on deformation temperature. The activation energy Q was calculated to be 409 kJ/mol and the constitutive model of this material was established. By combining the power dissipation map with instability map, the processing map was established to optimize the deformation parameters. The optimum deformation parameter was at 1150 °C–1200 °C and 0.001 s 1–0.03 s 1 for this alloy. The microstructure of specimens deformed at different conditions was analyzed and connected with the processing map. The material underwent instability deformation at the strain rate of 1 s 1, which was predicted by the instability map. The surface fracture was observed to be the identification of the instability.  相似文献   

15.
The corrosion behavior of Ti–8Al–1Mo–1V alloy was investigated in 3.5% NaCl and 5% HCl solutions. Corrosion properties of Ti–6Al–4V alloy were also evaluated under the same conditions for comparison. It was found that both Ti–8Al–1Mo–1V and Ti–6Al–4V alloys exhibited spontaneous passivity and low corrosion current densities in 3.5% NaCl solution. The potentiodynamic polarization curves obtained in 5% HCl solution revealed an active–passive transition behavior and similar corrosion rates for the examined alloys. However, the results of the weight loss experiments under accelerated immersion conditions (5 M HCl at 35 °C) indicated that Ti–8Al–1Mo–1V alloy exhibited inferior corrosion behavior compared to Ti–6Al–4V alloy. These results were confirmed by scanning electron microscopy (SEM) analysis of the samples after immersion tests which revealed that the β phase was corroded preferentially for both alloys, but to a larger extent in the case of Ti–8Al–1Mo–1V alloy.  相似文献   

16.
Abstract

Plane strain compression tests at 5 s?1 and at temperatures of 270–480°C have been carried out on an Al–1Mg–1Mn alloy containing a bimodal distribution of intermetallic particles and after a prior heat treatment to coarsen all particles to greater than 1 μm in size. During the heat treatment, recrystallisation of the initially hot worked material only proceeded with coarsening of the fine particles. During subsequent hot deformation, thin foil electron microscopy revealed that identical subgrain structures were developed in the two materials by dynamic recovery at temperatures below 450°C. At higher temperatures, the initially recrystallised material showed localised particle stimulated dynamic recrystallisation. The subsequent static recrystallisation rate was more than 103 times faster in the material free from small particles.

MST/751  相似文献   

17.
Abstract

An artificial neural network model of microstructural evolution, in particular grain size and volume fraction of α phase, has been established and trained with the help of experimental results obtained using Ti—6Al—4V alloy subjected to homogeneous deformation under high temperature. The measurement of microstructural variables was carried out using a Leica microscope. By comparison of the calculated results with the experimental data from training specimens and testing specimens, it has been verified that the proposed model can be applied to compute the microstructural evolution of formed Ti—6Al—4V alloy.  相似文献   

18.
The isothermal compressions of as-cast Ti–6Al–2Zr–1Mo–1V titanium alloy in a wide temperature range of 1073–1323 K and strain rate range of 0.01–10 s−1 with a reduction of 60% were conducted on a Gleeble-1500 thermo-mechanical simulator. The flow stress shows a complex non-linear intrinsic relationship with strain, strain rate and temperature, meanwhile the strain-softening behavior articulates dynamic recrystallization mechanism in α phase, dynamic recovery mechanism in β phase and their comprehensive function during phase transformation (α + β). Based on the experimental data, an artificial neural network (ANN) was trained with standard back-propagation learning algorithm to generalize the complex deformation behavior characteristics. In the present ANN model, strain and temperature were taken as inputs, and flow stress as output. A comparative study has been made on ANN model and improved Arrhenius-type constitutive model, and their predictability has been evaluated in terms of correlation coefficient (R) and average absolute relative error (ARRE). During α, α + β and β phase regime, R-value and ARRE-value for the improved Arrhenius-type model are 0.9824% and 6.02%, 0.9644% and 21.02%, and 0.9627% and 12.38%, respectively, while the R-value and ARRE-value for the ANN model are 0.9992% and 0.91%, 0.9996% and 1.47%, and 0.9975% and 2.17%, respectively. The predicted strain–stress curves outside of experimental conditions articulate the similar intrinsic relationships with experimental strain–stress curves. The results show that the feed-forward back-propagation ANN model can accurately tracks the experimental data in a wide temperature range and strain rate range associated with interconnecting metallurgical phenomena, and in further it has a good capacity to model complex hot deformation behavior of titanium alloy outside of experimental conditions.  相似文献   

19.
Abstract

Compression tests were carried out on two compositions of Cu–Sn bronze: Cu–9·2Sn and Cu–9·1Sn–0·26Zn (wt-%). The experiments were performed at temperatures from ambient up to 750°C and at nominal (initial) strain rates in the range 10-3 to 10-1 s-1. The measured data were converted into true stress–true strain curves; these displayed yield drops as well as single peaks (or maxima) at higher temperatures and lower strain rates. The mean rate sensitivity applicable to the curves was 0·25. Optical metallography indicated that dynamic recrystallisation of the ‘grain refinement’ type was taking place at the higher temperatures and proceeded by necklace formation. Electron backscattered diffraction measurements were also carried out; these revealed that twinning plays an important role in these materials. The present results show that the progress of recrystallisation is considerably slower than in OFHC copper and that the recrystallised grain size is appreciably finer. These observations, taken together, all indicate that the high temperature flow behaviour of the tin bronzes is controlled by solute drag and is not of the conventional ‘pure metal’ type.  相似文献   

20.
Mg–Gd–Y–Zr alloys are among recently developed Mg alloys having superior mechanical properties at elevated temperatures. Dynamic recrystallization (DRX) and rare earth-rich particles play important roles in enhancing the high-temperature strength of these alloys. Accordingly, the microstructural evolution of a fine-grained extruded Mg–5Gd–4Y–0.4Zr alloy was investigated after hot shear deformation in the temperature range of 350–450 °C using the shear punch testing (SPT) method. The results reveal the occurrence of partial dynamic recrystallization at the grain boundaries at 350 °C while the fraction of DRX grains increases with increasing deformation temperature. A fully recrystallized microstructure was achieved after SPT at 450 °C. The Gd-rich and Y-rich cuboid particles, having typical sizes in the range of ~50 nm to ~3 μm, show excellent stability and compatibility after hot shear deformation, and these particles enhance the high-temperature strength during hot deformation at elevated temperatures. The textural evolution, examined using electron backscattered diffraction, revealed a non-fibrous basal DRX texture after SPT which is different from the conventional deformation texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号