首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of element sulphur on the performance of corrosion inhibitor in H2S/CO2 gas field solution was investigated at different velocities. The morphology and composition of corrosion products were characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) methods. The results indicated that L360 QS steel surface suffered from sulphur-induced pitting corrosion at a low velocity due to insufficient sulphur-carrying fluid power. At high flow velocities, the steel surface is likely to be suffered high fluid power which can remove the inhibitor film and corrosion scales by the mechanical erosion effect. The sulphur corrosion mechanism model and the flow-induced corrosion model due to the high wall shear force have been proposed in the study. This work suggested that the gas production rate should be controlled at an acceptable level to guarantee the service safety of pipeline system.  相似文献   

2.
The ‘A line’ of the Sichuan Natural Gas East Transportation in China was used as the subject of the study, and an existing CO2/H2S corrosion model was utilised to predict the uniform corrosion rate. Then, the flow parameters were simulated by computational fluid dynamics based on turbulence theory, and the influence on the corrosion rate of the pipeline was analysed in a detail to more accurately describe the corrosion problems of natural gas pipelines that contain CO2/H2S. After that, an updated CO2/H2S corrosion model under the influence of flow filed was proposed by modifying the existing CO2/H2S corrosion model. The actual condition was calculated by the updated CO2/H2S corrosion model. Results show that flow parameters, namely, velocity, turbulent kinetic energy and phase distribution, affect pipeline corrosion. The flow parameters did not change significantly at the small scale changes in the pipeline (5 and 15°) of a broad and smooth flow channel of the large diameter gas transport pipeline. The shape of corrosion often appears in the form of an elliptical sheet. The corrosion location and the corrosion rate calculated by the updated model are consistent with the wall thickness detection data in the site conditions, which verified that the updated CO2/H2S corrosion model is valid. The updated CO2/H2S corrosion model influenced by the flow field can predict the corrosion distribution and the corrosion rate of the three-dimensional key positions in natural gas pipelines.  相似文献   

3.
The abrasion resistances of CO2 corrosion scales formed on API P110 grade carbon steel at different temperatures and CO2 corrosion behaviour of P110 carbon steel have been investigated utilising weight loss method, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that as the film forming temperature increased, the abrasion rate of CO2 corrosion scales increased firstly and then decreased, the variation trend was similar to that of the corrosion rate, and the maximal abrasion rate was present at 70°C rather than 100°C, at which the maximal corrosion rate was obtained and CO2 corrosion scales were loose and porous and were composed of FeCO3, Fe3C and CaCO3. The abrasion resistances of CO2 corrosion scales formed at 100°C was reinforced by the sand particles embedded easily in the loose and porous layer, together with a very hard residual skeleton, Fe3C. In addition, CaCO3 was worn out easily and substituted by SiO2 during abrasive wear.  相似文献   

4.
CO2和H2S是油气管道中主要的腐蚀介质,两者往往同时存在于原油和天然气之中,是造成油气输送管道内腐蚀发生的主要原因之一,甚至会导致管道失效、穿孔、泄漏、开裂等现象,严重威胁了管网的安全运行及正常生产。因此CO2和H2S引起的管道腐蚀问题,已成为当前研究的热点问题。针对油气管道日益严重的CO2和H2S腐蚀问题,综述了CO2单独存在、H2S单独存在以及CO2和H2S共同存在三种体系中油气管道的腐蚀过程,得出了在这三种腐蚀体系下油气管道出现的主要腐蚀行为规律以及腐蚀机理。阐述了CO2和H2S共同存在体系下,缓蚀剂、耐蚀性管材、电化学防腐技术、管道内涂层技术等先进的油气管道腐蚀防护技术,并剖析了这些防护措施各自的特点及在实际工程使用中的优势和局限性。最后,展望了CO2和H2S共存体系的进一步研究方向以及更经济、更有效的防腐措施发展前景。  相似文献   

5.
高含H2S/CO2环境中套管钢腐蚀行为与腐蚀产物膜关系   总被引:1,自引:0,他引:1  
研究了在高含H1S/CO2环境中腐蚀产物膜在套管钢腐蚀过程中作用.通过模拟某气田井下腐蚀环境,采用失重腐蚀方法研究了NT80ss和L80钢钢在1.5MPu、30~120℃环境中腐蚀规律,并采用电化学交流阻抗(EIS)技术和扫描电镜(SEM)分析了腐蚀产物膜和腐蚀行为的关系.结果表明:60℃为NT80ss和L80钢腐蚀的临界温度,低于60℃时.随温度增加,腐蚀速率降低,高于60℃时,腐蚀速率随温度增加而增大;与其它温度相比,在60℃环境中NT80ss和L80钢腐蚀产物膜的阻抗能力最强、膜的致密性最好,相应腐蚀速率最低.  相似文献   

6.
The corrosion behavior of eight Fe-Nb-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S atmospheres. The corrosion kinetics followed the parabolic rate law for all alloys at all temperatures. The corrosion rates were reduced with increasing Nb content for Fe-x Nb -3Al alloys, the most pronounced reduction occurred as the Nb content increased from 30 to 40 wt.%. The corrosion rate of Fe-30Nb decreased by six orders of magnitude at 700°C and by five orders of magnitude at 800°C or above by the addition of 10 wt.% aluminum. The scales formed on low-Al alloys (3 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with Al dissolved near the outer-/inner-layer interface) and an inner complex layer of FexNb2S4(FeNb2S4 or FeNb3S6), FeS, Nb3S4 (only detected for Nb contents of 30 wt.% or higher) and uncorroded Fe2Nb. No oxides were detected on the low-Al alloys after corrosion at any temperature. Platinum markers were found to be located at the interface between the inner and outer scales for the low-Al alloys, suggesting that the outer scale grew by the outward transport of cations (Fe and Al) and the inner scale grew by the inward transport of sulfur. The scales formed on high-Al alloys (5 wt.% Al) were complex, consisting primarily of Nb3S4, Al2O3 and (Fe, Al)xNb2S4, and minor amounts of (Fe, Al)S and uncorroded intermetallics (FeAl and Fe2Nb). The formation of Nb3S4 and Al2O3 blocked the transport of iron through the inner scale, resulting in the significant reduction of the corrosion rates.  相似文献   

7.
The corrosion behavior of pure Nb and three Nb Al alloys containing 12.5, 25, and 75 at.% Al was studied over the temperature range of 800–1000°C in a H2/H2S/H2O gas mixture. Except for the Nb-12.5Al alloy consisting of a two phase structure of -Nb and Nb3Al, other alloys studied were single phase. The corrosion kinetics followed the parabolic rate law in all cases, regardless of temperature and alloy composition. The parabolic rate constants increased with increasing temperature, but fluctuated with increasing Al content. The Nb-75Al alloy exhibited the best corrosion resistance among all alloys studied, whose corrosion rates are 1.6–2.2 orders of magnitude lower than those of pure-Nb (depending on temperature). An exclusive NbO2 layer was formed on pure Nb, while heterophasic scales were observed on Nb-Al alloys whose compositions and amounts strongly depended on Al content and temperature. The scales formed on Nb-12.5Al consisted of mostly NbO2 and minor amounts of Nb2O5, NbS2, and -Al2O3, while the scales formed on Nb-25Al consisted of mostly Nb2O5 and some -Al2O3. The scales formed on Nb-75Al consisted of mostly -Al2O3 and Nb3S4 atT 900°C, and mostly -Al2O3 , Nb3S4 and some AlNbO4 at 1000°C. The formation of -Al2O3 and Nb3S4 resulted in a significant reduction of the corrosion rates.  相似文献   

8.
The corrosion behavior of Ni-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range of 550–800C in a mixed gas of H2/H2O/ H2S. The scales formed on all alloys contained only sulfides and were doublelayered. The outer scale was single-phase Ni3S2. Depending on the alloy composition and reaction conditions, the inner scale was: (1) a mixture of MoS2 plus Ni3S2 with/without Ni, (2) MoS2, or (3) MoS2 plus intermetallic particles and/or double sulfide Ni2.5Mo6S6.7. Neither internal oxidation nor internal sulfidation were observed at lower temperatures. Internal sulfidation was however observed at higher temperature when the scale apparently melted. The parabolic law was generally obeyed for the most concentrated alloys. For the two more-dilute alloys the kinetics were mostly linear. A decrease in the corrosion rate occurred with increasing Mo content of the alloy and may be attributed to the presence of increasing volume fractions of MoS2 and/or of a double Ni-Mo sulfide in the inner region of the scale. For the two most concentrated alloys this may also be due to the presence of a number of particles of the unsulfidized intermetallic compound, which is Ni3Mo for Ni-30Mo, but NiMo for Ni-40Mo.  相似文献   

9.
The corrosion behavior of 11 Fe-Mo-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S mixed-gas environments. With the exception of Fe-10Mo-7Al, for which breakaway kinetics were observed at higher temperatures, all alloys followed the parabolic rate law, despite two-stage kinetics which were observed in some cases. A kinetics inversion was observed for alloys containing 7 wt.% Al between 700–800°C. The corrosion rates of Fe-20Mo and Fe-30Mo were found to be reduced by five orders of magnitude at all temperatures by the addition of 9.1 or higher wt.% aluminum. The scales formed on low-Al alloys (5 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with some dissolved Al) and a complex inner of Al0.55Mo2S4, FeMo2S4, Fe1.25Mo6S7.7, FeS, and uncorroded FeAl and Fe3Mo2. Platinum markers were always located at the interface between the inner and outer scales for the low-Al alloys, indicating that outer-scale growth was due mainly to outward diffusion of cations (Fe and Al), while the inner scale was formed primarily by the inward flux of sulfur anions. Alloys having intermediate Al contents (7 wt.%) formed scales that consisted of FeS and Al2O3. The amount of Al2O3 increased with increasing reaction temperature. The high-Al-content alloys (9.1 and 10 wt.%) formed only Al2O3 which was responsible for the reduction of the corrosion rates.  相似文献   

10.
The corrosion of Fe-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range 600–980C in a H2/H2O/H2S mixture having a sulfur pressure of 10–5 atm. and an oxygen pressure of 10–20 atm. at 850C. All alloys were two-phase, consisting of an Fe-rich solid solution and an intermetallic compound, Fe3Mo2. The scales formed on Fe-Mo alloys were bilayered, consisting of an outer layer of iron sulfide (FeS) and of a complex inner layer whose composition and microstructure were a function of the reaction temperature and of the Mo content of the alloys. No oxides formed under any conditions. The corrosion kinetics followed the parabolic rate law at all temperatures. The addition of Mo caused only a slight decrease of the corrosion rate. Platinum markers were always located at the interface between the inner and outer scales, indicating that outer scale growth was primarily due to outward diffusion of iron, while the inner scale growth had a contribution from inward diffusion of sulfur.  相似文献   

11.
The corrosion behavior of seven Ni-Mo-Al alloys was investigated over the temperature range of 600–950°C in a mixed-gas atmosphere of H 2/H 2O/H 2 S. The parabolic law was followed at low temperatures, while linear kinetics were generally observed at higher temperatures. At a fixed Mo content, the transition from parabolic to linear kinetics shifted to higher temperature with increasing Al concentration. Double-layered scales generally formed on alloys having a low Al content, consisting of an outer layer of nickel sulfide and a complex inner scale. The thickness of the outer scale and the inner scale decreased as the Al content increased. The outer scale became porous and discontinuous with increasing Al content and temperature. Al 2 O 3 was detected in the scales of all alloys corroded at higher temperatures ( 800°C), even though the amount of Al 2 O 3 was very small in some cases. The decrease in corrosion rate with increasing Al content may be attributed to the formation of Al 2 O 3,Al 0.55 Mo 2 S 4,and Al 2 S 3 in the inner scale.  相似文献   

12.
The corrosion behavior of two Ni-Al alloys and four Ni-Nb-Al alloys was studied over the temperature range of 600° C to 1000° C in a mixed-gas of H2/H2O/H2S. The parabolic law was generally followed, although linear kinetics were also observed. Multiple-stage kinetics were observed for the Ni-Al alloys. Generally, the scales formed on Ni-13.5Al and Ni-Nb-Al alloys were multilayered, with an outer layer of nickel sulfide with or without pure Ni particles and a complex inner scale. The outer scale became porous and discontinuous with increasing temperature. Very thin scales formed on Ni-31Al. The reduction in corrosion rate with increasing Al content is ascribed to the formation of Al2O3 and Al2S3 in the scale. Platinum markers were found at the interface between the outer and inner scales.  相似文献   

13.
Abstract

The polarisation characteristics for a deformed smooth surface of a 0·2% carbon steel in an artificial sea water have been determined under static and cyclic loading conditions. The influence of strain level and loading frequency on anodic and cathodic Tafel constants, corrosion current density, and corrosion potential is described. Based on these data, the conditions for corrosion fatigue testing which corresponded to a maximum synergism between surface deformation and anodic dissolution were determined. Corrosion fatigue tests, which were conducted under both constant potential and constant current density conditions have shown that a process of metal dissolution plays a determining role in the short corrosion fatigue crack growth behaviour. An experimentally based criterion is proposed involving the development of a short corrosion fatigue crack, of characteristic size, which is associated with the spacing between the major microstructural barriers. This criterion is a function of both shear stress and the parameters controlling the anodic dissolution process on a cyclically deformed smooth suiface. An expression predicting the formation of short corrosion fatigue cracks is presented which takes into account the synergistic action of shear stress and the corrosion process.  相似文献   

14.
An impingement jet system was used to study the corrosion of API X65 steel in a wet CO2-containing environment via electrochemical tests, surface analysis technique and computational fluid dynamics simulation. The corrosion rate decreased in the wet environment compared to that in the bulk solution. When under flow condition, corrosion rate increased with the flowing velocity, especially when above the critical flowing velocity. Continuous electrolyte film was formed and electrochemical reaction started to occur in about 70% RH, and the critical RH appeared at 70–80%, above which pit size and amount remarkably increased with flow velocity.  相似文献   

15.
The corrosion of Fe-Nb alloys containing up to 40 wt.% Nb has been studied over the temperature range 600–980°C in a mixed gas of constant composition having sulfur and oxygen pressures ranging from 10–8 to 10–4 atm. and from 10–27 to 10–18 atm., respectively. All alloys were two-phase, consisting of an Fe-rich solid solution and an intermetallic compound, Fe2Nb. The scales formed on the Fe-Nb alloys were duplex, consisting of an outer layer of iron sulfide (FeS) and an inner complex layer of FexNbS2(FeNb2S4 or FeNb3S6), FeS and unreacted Fe2Nb. No oxides were detected at any temperature. The addition of Nb reduced the corrosion rate. The corrosion kinetics of Fe-Nb alloys followed the parabolic rate law, regardless of alloy composition and temperature. Platinum markers, attached to the original alloy surfaces, were always located at the interface between the inner and outer scales.  相似文献   

16.
17.
The effect of polyacrylamide on corrosion behavior of N80 steel in the HPAM/H2S/CO2 environment was studied by using weight-loss and electrochemical tests to simulate the environment of production wells in polymer flooding. The morphology and composition of corrosion scales were studied by scanning electron microscopy, energy dispersive X-ray spectrometer, and X-ray photoelectron spectroscopy. The results show that as the polyacrylamide concentration increases, the uniform corrosion rate of N80 steel decreases gradually. The safe service life of N80 steel grows along with the increase of the concentration of polyacrylamide. The corrosion scales of N80 steel in the HPAM/H2S/CO2 environment is split into two layers, an inner layer of O-rich composed of FeCO3 and an outer layer of S-rich consisting of FeS. Polyacrylamide adsorbs on the surface of N80 steel to form a protective network, which blocks contact between the metal and the solution and then inhibits the anodic dissolution of the metal. Moreover, the growth of polyacrylamide concentration increases the pH value of the solution and promotes the ionization of H2S, HS, and H2CO3 in the solution.  相似文献   

18.
Welding with fusible electrode and shielding gas (GMAW) using a shielding mixture based on CO2 + O2 is a procedure with high potential for joining low-carbon and low-alloy steels compared with traditional mixtures based on argon. One of the reasons for this is related to the possibility of achieving a high penetration level without the need to increase the heat supply of the electric arc, by employing the shielding mixture of CO2 + O2, and the consequent decrease in the consumption of energy carriers. For that reason, the present paper presents a study on the influence of the shielding atmosphere characteristics (O2/CO2 ratio) and the welding current in the geometry of square groove weld joints on plates. For this purpose, a factorial experimental design was applied to obtaining regression equations, which would map such a behaviour. The equations were obtained using the O2/CO2 ratio and the welding current as independent variables. Nomograms were also plotted in order to make it easier to apply the results of this paper.  相似文献   

19.
Abstract

The corrosion of X70 steel and iron in supercritical CO2/SO2/O2/H2O environment were investigated after a 454 h exposure. Optical microscopy was applied to observe the morphology of etch pits and synthesise the three-dimensional morphology. X-ray diffraction and X-ray photoelectron spectroscopy were employed to detect the composition of product scales. Experimental results verified that the localised corrosion occurred on the X70 steel sample under corrosion product deposits. Ferrous sulphate, sulphur and iron sulphide were detected as the corrosion products.  相似文献   

20.
对带状组织级别不同的管线钢在CO2及H2S/CO2饱和的NACE溶液中的腐蚀速率和腐蚀形貌进行了比较分析。结果表明,在CO2饱和的NACE溶液中,带状组织级别越低的材料,发生均匀腐蚀的特征越明显,通过生成保护性膜抵抗腐蚀的能力越强。而带状组织级别越高的材料,发生局部腐蚀,尤其是点蚀的特征越明显。在H2S/CO2饱和的NACE溶液中,带状组织级别越低的材料,越不易发生氢致开裂现象。为了提高管线钢抗CO2及H2S/CO2腐蚀的性能,应控制其带状组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号