首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The formation of stable back beads in the first layer weld during one side multilayer welding is important to achieve high quality welded metal joints. The authors thus employed the switch back welding method for welding V groove joints without using backing plates. Moreover, in the field work, there is misalignment of both metal plates during set-up. The suitability of the welding conditions for each root gap and the misalignment were verified by observation of the arc, molten pool and external appearance of back beads. Welding conditions, namely, welding current, wire feedrate, weaving width, forward/backward stroke of switch back motion and welding speed, were controlled continuously according to root gap variations. Stable back beads were obtained for root gaps between 4.9 and 2.3 mm and misalignments between 0.1 and 2.8 mm.  相似文献   

2.
The formation of stable back beads in a root pass weld during one side multi-layer welding is important to achieve high quality welded metal joints in MAG welding. The authors employed the switch back welding method for V groove joints without backing plates. In this switch back welding method, the torch moves forward and backward with an oscillation frequency of 2.5 Hz. In order to achieve this welding, personal computers control the conventional welding robot, the power source characteristic and the wire feeder unit. During the forward, the torch is weaving on the V groove gap without the weld pool. If the weaving width becomes wider than the proper width, the tip of the wire becomes high and a good back bead cannot be obtained. The weaving width is adjusted so as to get the proper width in the switch back welding. The suitability of the welding conditions for each root gap was verified by observation of the arc, the weld pool and the external appearance of back beads. A good back bead was obtained under V groove welding in 2–4 mm gap.  相似文献   

3.
Abstract

Undercut and humping bead are the common defects that limit the maximum welding speed of tandem pulsed gas metal arc (GMA) welding. In order to increase the maximum welding speed, effects of the inclination angle, interwire distance and welding current ratio between the leading wire and trailing wire on bead formation in high speed welding are investigated. The undercut and humping bead is attributed to the irregular flow of molten metal towards the rear part of the weld pool. This irregular flow can be prevented by the trailing wire with a push angle from 5° to 13° , which provides an appropriate component of arc force in the welding direction. The irregular flow is also related to the distance between the leading wire and the trailing wire, and the flow becomes regular when the distance is in the range 9–12 mm. Moreover, the stabilisation of the bulge of the weld pool between the two wires, the presence of enough molten metal below the trailing arc, and the reduced velocity of molten metal flow towards the rear part of the weld pool, are essential to increase the maximum welding speed. These conditions can be obtained by adjusting the ratio of the leading arc current to the trailing arc current. A maximum welding speed as high as 4–4·5 m min?1 is achieved by setting the current ratio to a value ranging from 0·31 to 0·5.  相似文献   

4.
Abstract

The present paper develops a hollow axis motor driven high speed rotation arc system for narrow gap welding (NGW), and introduces the features of this system. Some welding experiments were then carried out to investigate the characteristics of welding wire melting and weld formation for this new process. Experimental results show that the melting rate of wire increases and the residual melting ball diameter of wire tip decreases respectively with an increase in rotation speed, and this melting rate is higher in pulsed welding and NGW respectively than in dc and flat plate welding. Furthermore, the arc rotation can obviously improve the penetration into NGW groove sidewalls and bead shape, and thus the system has been used to weld practical NGW joints successfully.  相似文献   

5.
Abstract

Controlling welding hot cracking based on electromagnetic force was carried out. The results show that the welding cracking can be inhibited with this method, which lies on the voltage of capacitor and the frequency of applying force. The sheet bears the downward axial force and the less radial force of flat spiral coil. The radial force points at the centre of the sheet, so it is able to compress the weld metal. Moreover, the axial force also has the ability to compress the weld metal by means of the backing plate under weldment. Controlling welding hot cracking is mainly due to the improving of mechanical condition of weld metal within brittle temperature range.  相似文献   

6.
Abstract

A newly developed low transformation temperature welding wire, of which the transformation start temperature is lower than that of conventional welding wires, was applied to fabrication of fillet welded T joints. The welding angular distortion and the temperature profile of the weld metal were continuously measured during the welding process. The angular distortion of the fabricated T joint was reduced when the weld metal reached the martensitic transformation start temperature. The residual angular distortion was less with the low transformation temperature welding wire than that with the conventional welding wires. The welding distortion of T joints was calculated by a numerical simulation with consideration of the effect of phase transformation under weld thermal cycles. The welding distortion was reproduced with high accuracy in the numerical simulation. Results of the numerical simulation also determined that there was a direct correspondence between the transformation expansion of the weld metal and the angular distortion.  相似文献   

7.
Abstract

A rotating arc system for narrow gap horizontal welding was developed for solving the problem that the molten pool sagged due to the gravity. The characteristic of the system was that the synchronous rotation of nozzle and wire was generated by eccentric sleeve driven by motor. This process not only may reduce welding effective heat input due to an increase in the welding instantaneous velocity but also may disperse arc force which could counteract the gravity of upper side of molten metal. Both the two aspects were beneficial for horizontal weld formation. Experimental results indicated that shapely horizontal joint could be obtained in appropriate rotating parameters. The asymmetry of joint formation indicated that the heat affected zone width and microstructure in upper side were larger than that in lower side. The effective heat input difference near each side caused by the instantaneous velocity difference was the main reason why the formation characteristics occurred.  相似文献   

8.
Abstract

Laser welding with filler wire additions could be used in restoration of components that are of high cost or sometimes difficult to procure, such as steam turbine blades in fossil fuel power plants. In the present work, machined V groove specimens were employed to simulate laser repair of Carpenter 636 stainless steel (SS), which has a similar composition to a blade material, type 422 SS. Before repair welding, a heat treatment procedure including solution and temper treatments of the specimens was carried out according to the mechanical and microstructural analyses of a used blade after 20 years service at about 540° C. Tensile, impact, and fatigue crack growth tests of weld repairs using 410 SS filler wire were conducted. The weld repairs exhibited an impact toughness similar to that of the base metal and a lower fatigue crack growth rate than the base metal. However, the lower hardness associated with 410 SS filler metal led to tensile fracture in the weld metal of repaired specimens. Accordingly, the use of 410 SS filler metal for repair welding type 422 SS components should be limited to regions under low stress.  相似文献   

9.
Abstract

Welding of AZ31B magnesium alloy is carried out using alternating current pulsed metal inert gas (ac-PMIG) welding with 1·6 mm diameter of filler wire. Typical current waveform is used to make sure arc given an accurate energy input into filler wire. The arc characteristics, metal transfer forms, microstructure and mechanical property of ac-PMIG welding of AZ31B magnesium are investigated. The results show that a stable welding procedure and continuous joints can be obtained easily under a wide range of welding parameters. The most important factors for ac-PMIG welding are negative electrode (EN) ratio and pulse rework current, which give an accurate energy input into filler wire. The grain in fusion zone is much finer and more uniform, and grain size does not grow significantly in the heat affected zone compared with base metal. The average ultimate tensile strength of weld beads is 97·2% of base metal.  相似文献   

10.
Abstract

A numerical modelling of the welding arc and weld pool is established for moving argon shielded gas tungsten arc welding to systematically investigate the effect of the active element oxygen and the welding parameters on the Marangoni convection and the weld shape using FLUENT software. The different welding parameters will change the temperature distribution and gradient on the pool surface, and affect the strength of Marangoni convection and the weld shape. Under high oxygen content, the weld depth/width (D/W) ratio substantially depends on the welding parameters. A high welding speed or large electrode gap (arc length) will make the weld D/W ratio decrease. The weld D/W ratio initially increases and then remains constant around 0·5 with the increasing welding current. When the oxygen content is lower, the weld D/W ratio decreases with the increasing welding current. However, the weld D/W ratio is not sensitive to the welding speed or electrode gap. The predicted weld D/W ratio agrees well with the experimental results.  相似文献   

11.
Abstract

This article presents a novel method of thermite welding. A hand operated portable welding can be conveniently realised using self-made thermite welding pencil without any welding equipments. A butt junction was obtained between two low carbon steel plates. Morphological, microstructure and mechanical analyses of the weld bead were carried out. The results demonstrated that the two steel plates were jointed by fusion bonding with the filler. No defects such as porosity and microcrack were found. The hardness test showed the low hardness of the fusion zone compared with the base material. In addition, the grain growth in HAZ did not affect the hardness of the base material. The average tensile strength of welds was 285·4 MPa, ~70% of the average tensile strength of low carbon steel.  相似文献   

12.
Abstract

The effect of welding parameters on the distribution of wire feeding elements has been investigated during CO2 laser and pulsed gas metal arc hybrid welding process. The molten metal flow on the pool surface and inside of the samples was observed by a high speed video camera and an in situ X-ray transmission imaging system respectively. The results indicate that the fluid flow towards the inside of keyhole, namely inward flow, improves the homogeneity of weld metal. The distribution of alloying elements is more homogeneous in leading laser compared with leading arc, since both of the drag force of the plasma jet and momentum of droplet promote the inward flow in leading laser. Almost homogeneous distribution of alloying elements can be attained if the oxygen content in the shielding gas is more than 2%, since the Marangoni flow direction changes from outward to inward with increasing the oxygen content.  相似文献   

13.
Abstract

To confirm the process potential and limitations of laser welding of magnesium alloys, a newly developed disc laser of 16 kW in maximum power was used to weld thin plates of AZ31B and AZ61A alloys. Melting characteristics and weld metal properties were studied under different process parameters. The very high power density of the applied beam caused the keyhole and the molten pool to be unstable. Underfill was the main welding defect limiting the process window and its formation was closely related to the keyhole instability. A process diagram indicating areas of sound and defected welds could be constructed. Sound welded joints could be obtained for AZ31B alloy with similar mechanical properties as that of the base material. The brittle intermetallics network present along the grain boundaries in AZ61A weld metals required a higher energy input to alleviate its detrimental effect on the mechanical properties of the welded joints.  相似文献   

14.
Abstract

A commonly observed welding defect that characteristically occurs at high welding speeds is the periodic undulation of the weld bead profile, also known as humping. The occurrence of humping limits the range of usable welding speeds in most fusion welding processes and prevents further increases in productivity in a welding operation. At the present time, the physical mechanisms responsible for humping are not well understood. Thus, it is difficult to know how to suppress humping in order to achieve higher welding speeds. The objectives of this study were to identify and experimentally validate the physical mechanisms responsible for the humping phenomenon during high speed gas metal arc (GMA) welding of plain carbon steel. A LaserStrobe video imaging system was used to obtain video images of typical sequences of events during the formation of a hump. Based on these recorded video images, the strong momentum of the backward flow of molten metal in the weld pool that typically occurred during high speed welding was identified as the major factor responsible for the initiation of humping. Experiments with different process variables affecting the backward flow of molten weld metal were used to validate this hypothesis. These process variables included welding speed, welding position and shielding gas composition. The use of downhill welding positions and reactive shielding gases was found to suppress humping and to allow higher welding speeds by reducing the momentum of the backward flow of molten metal in the weld pool. This would suggest that any process variables or welding techniques that can dissipate or reduce the momentum of the backward flow of molten metal in the weld pool will facilitate higher welding speeds and productivity.  相似文献   

15.
Abstract

The metal transfer behaviour of self-shielded flux cored wire and the resultant welding spatter were investigated by using a high speed camera. Three modes of metal transfer were found, i.e. bridging transfer without arc interruption in explosive form or by surface tension, globular repelled transfer and droplet transfer, while the former two modes played a key role in the weld metal transfer. Correspondingly, the bridge explosion, discontinuous globular repelled process and the misalignment of droplets transfer were the main factors causing the welding spatter.  相似文献   

16.
焊丝成分对高速列车转向架焊接接头性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用富氩基CO2焊工艺对高速列车转向架用S355J2G3钢板进行焊接,分析了焊丝中C,Mn,Si和Nb元素在焊接过程中的烧损及过渡规律,并研究了焊丝中C,Mn,Si和Nb元素含量变化对焊接接头力学性能的影响.结果表明,在富氩基CO2保护焊工艺中,Mn,Si元素会产生烧损,合理提高焊丝中Mn,Si元素含量,才能获得与母材相匹配的焊接接头性能,C元素的烧损规律与焊丝中各元素的原始含量有关.随着焊丝中C,Si,Mn元素含量的增加,焊缝金属的强度增加,断后伸长率降低.Nb元素的加入会显著提高焊缝金属的强度,但同时会恶化其塑性和韧性,因此应严格控制焊丝中的Nb元素含量.  相似文献   

17.
Abstract

The wire melting rate in gas metal arc welding using constant voltage power supplies is well described by a parabolic model that considers the effects of electrical resistance and arc heating. However, tests performed with constant current power supplies indicate that the melting rate can deviate from this model when welding current is close to the globular–spray transition value. Although the causes of this anomaly have not yet been well established, most authors consider them to be related to variations in liquid metal temperature close to the metal transfer mode transition current. The present work evaluates the effect of welding parameters on the wire melting rate when a constant current power supply is used. A numerical model that considers the contribution of both Joule and arc heating was developed to calculate the temperature distribution in the wire and its melting rate. The model was used to assess the changes in either arc heating or metal vaporisation that might explain the melting irregularities. High speed cinematography was used to analyse metal transfer in the current range associated with the melting irregularities.  相似文献   

18.
Abstract

This work presents a simplified model of metal transfer in gas metal arc welding. The model incorporates key features of metal transfer including the change in droplet diameters as welding moves from the globular into the spray metal transfer region, and the increase in welding voltage that is observed to occur as the pendant droplet grows. The model predicts that an instability arises in the globular metal transfer region, which leads to deterministic chaos and complex limit cycles with many droplet sizes. The instability also causes deterministic chaos with a characteristic gap in droplet diameters at the transition to spray mode metal transfer. The model explains observed features of metal transfer in some detail, including the existence and location of preferred bands of droplet sizes. Whether the instability is present or not defines the boundary between chaotic globular metal transfer and the stable drop spray transfer mode. The identification of deterministic chaos in gas metal arc welding metal transfer opens the way for new approaches to welding control.  相似文献   

19.
Abstract

Cathode spot formation is very pronounced during arc welding of titanium and titanium alloys. The dynamic behaviour of these spots was observed to interfere with metal transfer during welding, this interference being a fundamental cause of poor weld quality in these alloys. In the present work, stabilisation of the arc cathode spot with a focused Nd–YAG laser beam during pulsed gas metal arc welding of titanium was investigated. The laser beam was focused near the leading edge of the weld pool and the laser power and focus spot size were varied to determine the values required to confine the cathode spot to the laser focus position. The results showed that, for fixed welding conditions, the laser power required to prevent cathode spot motion varied as a function of focus spot size. The required laser power was minimised at 200 W for a spot size of 0.6 mm. The laser stabilised arcs had lower voltage but approximately the same current density as stabilised arcs. Increased welding speeds required marginally higher laser powers to stabilise the spot, but the minimum power was still attained with a 0.6 mm focus spot diameter. The laser power density required for stabilisation decreased as spot size was increased, varying from almost 106 W cm?2 at the smallest spot size to approximately 104 W cm?2 at the largest. Cathode spot stabilisation improved weld quality by reducing spatter generation and weld bead irregularity.  相似文献   

20.
Abstract

This paper investigates the potential of mechanical tensioning (MT) to reduce the magnitude of residual stresses in welds and to eliminate buckling distortion. Both friction stir (FSW) and arc welds have been produced from the aluminium alloy AA2024, with different levels of tensile stress applied along the weld line either during or after welding. The resulting welds have been characterised in terms of out of plane distortion, residual stresses and microstructure. Buckling distortion was eliminated by stretching plates to between 35 and 70% of the yield stress of the material during welding. For each set of welding parameters investigated, an optimum tensioning stress has been identified, which eliminates the tensile residual stress peak across the weld zone, along with distortion. This optimum tensioning stress increases in line with the heat input of the welding process. When MT stresses are increased beyond this optimum value, then distortion arises once more and a band of compressive stress is formed across the weld zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号