首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2/ZnO/Eosin Y structure films were prepared by a one-step cathodic electrodeposition method and used as a photoanode in a dye-sensitized solar cell (DSSC). Using this TiO2/ZnO/Eosin Y electrode in DSSC, the degradation of the cell with time was reduced and ISC, VOC and fill factor values were increased. The use of a thin ZnO layer, permitted the formation of an energy barrier at the electrode/electrolyte interface, thus reducing recombination rate and improving cell performance. In addition, the adsorbed dye molecules prepared by one-step cathodic electrodeposition with ZnO were very stable compared with that prepared by conventional immersing method, as evidenced by UV/vis absorption spectroscopy measurements.  相似文献   

2.
A synthetic route was developed to link N3 dye to polyacrylic acid (PAA) using ethylenediamine (en) as the linker. The resulting complex, PAA–en–N3, was then coated onto a TiO2 film. The modified TiO2 film electrode (hereafter PAA–en–N3/TiO2), when used as the photoanode in a dye-sensitized solar cell (DSSC), exhibited enhanced solar energy conversion efficiency compared with that of the usual DSSC with the N3/TiO2 film electrode. The increase in efficiency was attributed to the increased open-circuit voltage (Voc) and short-circuit photocurrent (Jsc). The increase in Voc was attributed to the formation of a hydrophobic PAA–en–N3 layer on the TiO2/electrolyte interface, while the increase in Jsc was attributed to the additional dye acquired by the TiO2 film from the PAA–en–N3 complex.  相似文献   

3.
Fabrication and performance study of dye‐sensitized solar cells using different counter electrodes and photoanodes is reported. Spin coated, E‐beam coated platinum, and graphene electrodes were used as counter electrodes. Different combinations of TiO2 nanoparticle and ZnO nanorods (NRs) with CdSe quantum dots were prepared and used as photoanodes. The photoanodes comprising of both ZnO NRs and TiO2 nanoparticles have shown improved performances in short‐circuit current density and open‐circuit voltage comparing the devices fabricated using only ZnO NR or TiO2 nanoparticles. The inclusion of CdSe quantum dots has been found to increase the performance of dye‐sensitized solar cell for all the photoanodes. In case of counter electrodes, the cells fabricated with graphene showed improved performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In the present work, 10 to 14 nm titania nanoparticles with high‐packing density are synthesized by the soft‐template method using a range of cationic surfactants including cetyl trimethylammonium bromide (CTAB), Sodium dodecyl sulfate (SDS), and dodecyl trimethylammonium bromide (DTAB). The synthesized nanoparticles are used as a photoanode material in dye solar cells. Density functional theory (DFT) simulations reproduce our experimental results of charge transfer and strong interaction between the TiO2 and N719. N719‐TiO2 complex establishes strong electrostatic bonding through H of the dye with the O of TiO2 surface. Solar cell efficiency of 6.08% with 12.63 mA/cm2, 793 mV, and 48.5% for short circuit current density, open circuit voltage, and fill factor, respectively, are obtained under 1 sun illumination for the dye‐sensitized solar cell (DSSC) using a film of mesoporous TiO2 synthesized from the SDS surfactant. On the other hand, the 21 nm commercial TiO2 powder (P25) device results in 4.60% efficiency under similar conditions. Electrochemical impedance spectroscopic studies show that the SDS device has lesser charge transport resistance than the other devices because of its higher surface area, packing density, and dye loading capacity. Our results show that employing high packing density‐based TiO2 nanoparticles represents a commercially viable approach for highly beneficial photoanode development for future DSSC applications.  相似文献   

5.
A room temperature fabrication method is developed for the preparation of a ZnO porous film on a plastic substrate, involving an electrophoresis deposition (EPD) process, followed by the compression of the film as the post-treatment. The thus prepared ZnO film is used for the photoanode of a dye-sensitized solar cell (DSSC). Besides, an indoline dye is employed as the sensitizer (referred to as D149) for the ZnO semiconductor. Performances of such DSSCs are studied at various compression pressures used for their ZnO films. Electrochemical impedance spectroscopy (EIS) is employed to quantify the charge transport resistance at the ZnO/dye/electrolyte interface (Rct2) and the electron lifetime (τe) in the ZnO film. As for the thickness effect, ZnO film with a thickness of about 22 μm renders the best efficiency for the ZnO based DSSC. In addition, UV-O3 is applied in two ways; in one way only the compressed ZnO film is treated in one step, and in the second way both the substrate and the compressed ZnO film are treated separately in two steps. The adherence of the ZnO film is shown by a photograph. Scanning electron microscopy is used to characterize the morphologies of the ZnO films.  相似文献   

6.
In this study, the photoelectrochemical characteristics of a ruthenium photosensitizer with an alkyl bithiophene group, designated as CYC-B1, are studied. The effect of mesoporous TiO2 film thickness on the photovoltaic performance of CYC-B1 and N3 dye-sensitized solar cells was investigated. The performance of the dye-sensitized nanocrystalline TiO2 solar cells (DSSC) fabricated using CYC-B1 dye-anchored TiO2 photoelectrode showed a convincing enhancement in cell efficiency when the TiO2 film thickness was increased from 3 μm (eff.=5.41%) to 6 μm (eff.=7.19%). The efficiency of the CYC-B1-sensitized DSSC was maximum at 6 μm of the TiO2 film thickness, reached its limiting value and remained constant up to 53 μm, although a similar trend was also observed for N3 dye-sensitized DSSC, however, the maximum efficiency achieved was only at 27 μm thickness (eff.=6.75%). As expected, the photocurrent density generated in the DSSC modified by CYC-B1 dye is larger than that from N3 dye. The effect of guanidinium thiocyanate (GuSCN) (additive) addition to the electrolyte on the photovoltaic performance of DSSCs based on CYC-B1 was also investigated. Furthermore, the electrochemical impedance spectroscopy (EIS) technique and photo-transient laser method have been employed to analyze the charge transfer resistances (Rct) and the lifetime of the injected electrons on the TiO2 containing different thicknesses.  相似文献   

7.
The effects of TiO2 photoelectrode's surface morphology and different solvents on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were studied. By successive coating of TiO2 suspension, composed of low and high molecular weight poly(ethylene)glycol (PEG) as a binder, double layered TiO2 photoelectrodes with four different structures were obtained. Among the DSSCs with different TiO2 electrodes, DSSC with P2P1 electrode (P2 and P1 correspond to PEG molecular weights of 20,000 and 200,000, respectively) showed higher performance under identical film thickness at a constant irradiation of 100 mW cm−2, which may be correlated with large pore size and high surface area of the corresponding TiO2 electrode. This was confirmed by electrochemical impedance spectroscopy (EIS) analysis of the DSSC and the transient photovoltage measurement of electrons in the TiO2 electrode. Among the different solvents investigated here, the DSSC containing acetonitrile showed high conversion efficiency and the order of performance of the DSSCs with different solvents were AN > MPN > PC > GBL > DMA > DMF > DMSO. Better correlation was observed between the donor number of solvents and photoelectrochemical parameters of the DSSCs containing different solvents rather than the measured viscosity and dielectric constant of solvents. The reasons for the low performance of the DSSCs containing DMA, DMSO and DMF, respectively, were due to the negative shift of TiO2 conduction band and the desorption of dye molecules from the TiO2 photoelectrode by those solvents.  相似文献   

8.
We report the preparation of nanoporous TiO2 electrode modified with an insulating material—BaCO3 and used as electrode for quasi solid state dye sensitized solar cells (DSSCs), with a benzothiadiazole-based dye (BTDR2) as sensitizer and PEDOT:PSS coated FTO as counter electrode. We found that the BaCO3 modification significantly increases the dye adsorption, resulting from the fact that the surface of BaCO3 is more basic than TiO2. The performance of the DSSCs with and without BaCO3 modified TiO2 electrodes were analyzed by cyclic voltammograms, optical absorption spectra, current-voltage characteristics in dark and under illumination and electrochemical impedance spectra. The photovoltaic performance has been significantly improved for the BaCO3 modified electrode as compared to bare TiO2 electrode having the same other components in the DSSCs. The value of the overall power conversion efficiency (η) improves from 2.42% to 4.38% under illumination intensity, when BaCO3 modified electrode is used instead of bare TiO2 electrode. The improvement in η has been attributed to the increased dye adsorption, reduction in recombination rate and enhancement in the electron lifetime when the modified TiO2 electrode is used.  相似文献   

9.
The influences of annealing temperature and different poly (ethylene glycol) (PEG) contents in nano-crystalline TiO2 electrodes with and without N3 dye on the electron transfer in a dye-sensitized solar cell (DSSC) were investigated. It is found that the power conversion efficiency increases with the increase in annealing temperature and becomes saturated at 400–500 °C, and further increase lowers the performance which is consistent with the enhancement of the crystalline TiO2 particles observed in X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images. Electrochemical impedance spectroscopy (EIS) also confirms this behavior. These results have been further verified by studying the electron lifetimes (τe) and electron diffusion coefficients (De) of a bare TiO2 and a dye-sensitized TiO2 film using a pulsed laser spectrometer. It is noted that both the electron lifetime and the electron diffusion coefficient increase with the increase in annealing temperature. However, the evolution of rutile TiO2 begins beyond 600 °C and this lowers the dye absorbance and the electron diffusion coefficients of TiO2 electrodes. A similar study was made by varying the content of the PEG in the TiO2 films. It is found that with the increase in the PEG content, a decrease in the electron lifetimes and a little hike in the electron diffusion coefficients are noted, where the cell performance remains almost the same. In addition, the dye adsorption decreases the electron lifetime and increases the electron diffusion coefficient of the TiO2 films regardless of the PEG content and the annealing temperature.  相似文献   

10.
This study investigates the effect of a ZnO-coated TiO2 working electrode on the power conversion efficiency of a dye-sensitized solar cell (DSSC). This electrode was designed and fabricated by dipping the TiO2 electrode with the TiCl4 treatment in a solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] and ethanol. The effects of the concentration of Zn(CH3COO)2·2H2O and the duration of dipping on the band gap of a working electrode and the power conversion efficiency of a DSSC were also examined. The band gap of the working electrode increases to 3.75 eV [TiO2 electrode dipped in 0.05 M Zn(CH3COO)2·2H2O) for 3 min] from 3.22 eV (TiO2 electrode). Interestingly, the power conversion efficiency of the DSSC with a Zn-coated TiO2 electrode (6.7%) substantially exceeds that of the conventional DSSC with a TiO2 electrode (5.9%), and it may be originated from an increased energy barrier between ZnO and TiO2 that reduces the electron recombination rate.  相似文献   

11.
A ZnO-covered TiO2 (denoted as ZnO/TiO2) film was prepared by incorporating a small quantity of particulate ZnO in a TiO2 matrix by thermal chemical vapor deposition. When used in a dye-sensitized solar cell, an enhancement was observed in both short-circuit photocurrent (Jsc) and open-circuit voltage (Voc) by 12% and 17%, respectively, relative to those of a cell containing a bare TiO2 film. The observed Jsc enhancement is attributed to the increase in the surface area of the ZnO/TiO2 film, and the Voc enhancement to the formation of a potential barrier by ZnO at TiO2/electrolyte interface. The films were characterized by FE-SEM, EDX, and XRD.  相似文献   

12.
The effects of low-temperature O2 plasma treatment of a TiO2 film are studied with the objective of improving the performance of dye-sensitized solar cells (DSSCs). X-ray photoelectron spectra (XPS) reveal that the ratio of titanium dioxide to titanium sub-oxides is increased in the O2 plasma-treated TiO2 film, compared with that of the untreated TiO2 film. This increase suggests that the oxygen vacancies in the film are effectively reduced. The near-edge X-ray absorption fine structure (NEXAFS) spectra results agree with the XPS result. It is proposed that there is a correlation between the shifts of the peaks in the NEXAFS spectra and the adsorption of N719 dye on the TiO2 particles. A DSSC having an O2 plasma-treated, 4 μm thick TiO2 film electrode renders a short-circuit photocurrent of 7.59 mA cm−2, compared with 6.53 mA cm−2 for a reference cell with an untreated TiO2 electrode of the same thickness. As a result of these changes, the solar-to-electricity conversion efficiency of the O2 plasma-treated cell is found to be 4.0% as compared with 3.5% for the untreated cell. This improvement in the performance is rationalized on the basis of increased N719 dye adsorption on to the TiO2, due to the reduction in the number of oxygen vacancies caused by the oxygen plasma treatment.  相似文献   

13.
Natural dye‐sensitized solar cells (DSSCs) are becoming promising candidates for replacing synthetic dyes. Anthocyanins, a flavonoid pigment which is responsible for the coloration in fruits and flowers, have shown productive results in employing them as natural dye for DSSC. But unfortunately, they exhibit low efficiency compared with synthetic dyes. Probing the reasons for the low efficiency of anthocyanin paves way for finding solution to increase the efficiency. This paper lists the important factors that are responsible for anthocyanin instability in DSSC. As a remedial measure, this paper introduces two buffer layer made of algal byproducts—sodium alginate and Spirulina. Rutile phase TiO2 nanorods prepared by hydrothermal method were used as photoelectrode and are subsequently characterized by X ray diffraction, transmission electron microscopy, and optical studies. The use of sodium alginate above the photoelectrode has proved to improve the dye concentration in the film by introducing more hydroxyl groups on the surface of TiO2. Anthocyanins extracted from rose petals using citric acid as solvent were used as dye for DSSC. Prior to the sensitization process with anthocyanin dye, the TiO2 film (with sodium alginate) was sensitized with Spirulina. The chlorophylls, xanthophylls, phycocyanins, and amino acids present in Spirulina assist the anthocyanins to bond with TiO2 efficiently. This helps in enhancing the efficiency of anthocyanins of rose dye from 0.99% to 1.47%.  相似文献   

14.
In this work, nanocrystalline P25 TiO2 films with different thicknesses were deposited on FTO coated glass substrates by an electrophoretic deposition technique (EPD) and applied as the work electrode for dye-sensitized solar cells (DSSC) using cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato)(4,4'di-nonyl-2'-bipyridyl) ruthenium(II) (Z907, Dyesol) as sensitizing dye.The results showed that the increasing the thickness of TiO2 films lead to increase the adsorption of the dye on the TiO2 layers which in turns improved the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. Furthermore, it was found that the effects of the surface states on the recombination of the photo-injected electrons (electron–hole pairs) in the TiO2 films strongly depend on theTiO2 electrode annealing temperature. Finally, a DSSC with a 32.82 μm thickness for TiO2 film annealed at 600°C produced the highest conversion efficiency with an incident solar energy of 100 mW/cm2 (η = 8.23%, Jsc = 15.98, Voc = 0.73, FF = 0.7).  相似文献   

15.
Solid-state dye-sensitized solar cell with p-type NiO as a hole collector   总被引:2,自引:0,他引:2  
A solid-state dye-sensitized solar cells (DSSC) comprising of p-type NiO thin layer on TiO2 was fabricated in which the dye is adsorbed on the p-type oxide and the thin NiO layer acts as a hole collector as well as a barrier for charge recombination. DSSC with NiO-coated TiO2 electrodes with Ru-dye delivers Isc=0.15 mA and Voc=480 mV. It was shown that the p-type oxide materials could be successfully used to construct DSSC and the plausible charge transfer mechanism is discussed.  相似文献   

16.
Columnar-structured rutile TiO2 film with a thickness of 1.4 μm is prepared using the radio-frequency (RF) magnetron sputtering technique, for application in dye-sensitized solar cells (DSSCs). Pure rutile TiO2 films are fabricated by controlling the substrate temperature during sputtering and using a substrate with a rough surface morphology. Successive substrate heating to 623 K induces the growth of a rutile TiO2 film that has a specific direction in the (1 1 0) plane, which results in a decrease in the average grain size. This causes in an increase of dye uptake and thereby contributes to enhancement of the photocurrent in the DSSC.  相似文献   

17.
A plastic photo-rechargeable capacitor is studied using a three-electrode configuration, separating a flexible dye-sensitized solar cell (DSSC) and a supercapacitor by sharing a common Pt electrode. The thick and uniform TiO2 film is formed by using commercially available TiO2 nanocrystals, which are treated in an isopropyl alcohol without surfactant by the electrophoretic deposition (EPD) to deposit the mesoporous TiO2 photoanode film with good adherence onto the plastic substrate. Afterward, a static mechanical compression technique as the post-treatment is employed to the electrophoretic deposited film in order to enhance the particles connection. In addition, a supercapacitor using PEDOT (poly(3,4-ethylenedioxythiophene)), which is potentiostatically electropolymerized to form a thick film, is fabricated to store the energy. The flexible DSSC part is fabricated with a TiO2 film of 10.9 μm thickness and it can provide photoelectric conversion efficiency up to 4.37% under 1 sun illumination. The photocapacitor is made with such a flexible DSSC and a supercapacitor with ca. 0.5 mm thick PEDOT film, which provides a specific capacitance of 0.52 F cm−2.  相似文献   

18.
Various kinds of cyanine and merocyanine organic dyes having short anchoring groups as sensitizers on nanocrystalline TiO2 electrodes were investigated to promote the short-circuit photocurrent (Jsc) and the solar light-to-power conversion efficiency (ηsun). The Jsc and ηsun improved when the three different three dyes (yellow and red cyanine dyes, and blue squarylium cyanine dye) were adsorbed simultaneously on a TiO2 electrode, as compared with the Jsc and ηsun of the TiO2 electrodes adsorbed by each single dye. The maximum ηsun was 3.1% (AM-1.5, 100 mW/cm2). The Jsc and ηsun were influenced by the solvents for the dye adsorption on the TiO2 electrode, and the efficiencies were improved by the addition of some cholic acids into the dye solution for adsorption. The electron transfer and/or the energy transfer from the red cyanine dye to the blue cyanine dye was observed on a SiO2 film using emission spectroscopy, suggesting a strong interaction between two dyes. The J-like aggregates of the blue cyanine dyes hardly showed sensitization efficiency.  相似文献   

19.
Plasmonic structures of FTO/TiO2/NPs-Ag and FTO/NPs-Ag/TiO2 electrodes were fabricated by sputter technology and the sol–gel & spin coating procedure. These electrodes with similar optical absorptions in the visible region enhanced by the surface plasmon resonance of silver nanoparticles have different photovoltaic properties, revealing that the significant design can be used to identify the favorably enhanced direction of plasmonic structure resulting from plasmonic scattering to trap light which confines light within the active TiO2 layer to promote dye absorption in dye-sensitized solar cells (DSSCs). In the FTO/TiO2/NPs-Ag, a 60% enhancement in photocurrent and an improvement in photovoltage were observed and the increased incident photon-to-photocurrent efficiency (IPCE) was consistent with the enhanced absorption spectrum. However, the photovoltaic properties of the FTO/NPs-Ag/TiO2 were similar to those of the standard electrode. This concept is potentially applicable to new kinds of solar cells.  相似文献   

20.
The major challenge of the operation of every solar cell based on dye including water splitting solar cell (WSSC) and dye sensitized solar cell (DSSC) is the using organic solvent medium which causes to decompose the solar cell structure, resulting environmental impact. Here, we synthesized and characterized two new ruthenium complexes with nitrogen and oxygen donor ligands for DSSC application which show good stability on TiO2 surface in water solvent. Interestingly, the DSSC based on [Ru(dcbpy)2(DPC)]Cl, where dcbpy = 4,4-dicarboxilic acid 2,2-bipyridin and DPC = diphenylcarbazide, was shown better efficiency in water than methanol dye loading as well as N3 as a benchmark sensitizer in the same condition. The DPC-based exhibited open circuit voltage (Voc) of 0.63 V, short-circuit current density (Jsc) of 2.5 mA/cm2 and fill factor (FF) of 70%, resulting an overall power efficiency of 1.12%. The incident-photon-to-current conversion efficiency (IPCE) value is also reached to 45% for [Ru(dcbpy)2(DPC)]Cl in the same condition It is proposed that the ruthenium complex containing nitrogen and oxygen donor ligands is more stability on TiO2 and prevent the decomposition of TiO2 porous under water solvent condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号