首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In non-pulsed gas metal arc welding (GMAW), spatter can be reduced by lowering the short-circuit current to a low level just before the re-arcing. The reduction in spatter requires an improvement in the accuracy of predicting the re-arcing by stabilizing the metal transfer and improving the robustness of the accuracy against disturbances. The controlled bridge transfer (CBT) process optimizes the accuracy of predicting the re-arcing in real time in response to the metal transfer, realizes spatter reduction and stable arc in non-pulsed GMAW. Traditionally, GMAW is carried out using electrode positive polarity. However, this polarity is not sufficient for welding extra-thin steel sheets, specifically those thinner than 1.0 mm. With electrode negative (EN) CBT process, although slight arc voltage fluctuation occurs caused by the behaviour of cathode spots on the tip of the wire during EN polarity GMAW, instantaneous voltage uses command computation to improve the transient response against the disturbance. Consequently, a stable arc can be obtained without increasing the number of short circuits in a unit time to obtain spatter-free welds.  相似文献   

2.
Abstract

Ultrasonic assisted gas metal arc welding (U-GMAW) has been recently developed to improve the metal transfer characteristics. The ultrasonic wave is applied on the metal transfer process by means of an acoustic field. Welding electrical signal measurement and high speed camera are employed to study the differences of short circuiting metal transfer between conventional GMAW and U-GMAW. Compared with the conventional GMAW, the short circuit frequencies of U-GMAW are obviously increased under the same welding parameters. Moreover, the voltage range of the stable short circuiting transfer is enlarged, and the weld appearances become more uniform with the action of the ultrasonic wave. The high speed video images indicate that the U-GMAW arc is compressed and the electrical field intensity is increased. The decrease in the arc length is the main reason for the increase in the short circuit frequency.  相似文献   

3.
焊接极性对水下高压干法GMAW影响分析   总被引:2,自引:2,他引:0       下载免费PDF全文
李凯  高洪明  李海超  丁扬 《焊接学报》2014,35(8):108-112
通过环境压力为0.1~2.0 MPa的水下高压干法熔化极气体保护焊(GMAW)试验,比较了直流反接与直流正接焊接过程特点.结果表明,直流反接时,当压力超过0.2 MPa后开始出现少量飞溅,随着环境压力增加,飞溅数量逐渐增多而尺寸逐渐减小.直流正接时,当环境压力大于0.4 MPa后,焊接过程稳定,几乎无飞溅产生.通过高速摄像分析总结了直流反接产生两种飞溅形式及其特征.熔滴偏离型飞溅是伴随着排斥过渡产生的;熔滴反弹型飞溅是由于熔滴接触母材后受向上方向电磁力作用,脱离母材而产生的,并分析了直流正接时飞溅较小的原因.  相似文献   

4.
Abstract

A new index for the analysis of stability of GMAW processes taking as a base the acoustic emission generated by the arc during the short circuit metal transfer is presented in the present work. The incidence of parameters of process is analysed in the indices of the acoustic emission signal, as well as its influence on the stability, evaluated through a new proposed index. The results obtained allowed having a relationship between acoustic signals and arc voltage signals, and demonstrated the validity of proposed index of acoustic emission for analysis of stability of GMAW process. The obtained results were then compared with other classic stability analysis methods based on statistical analysis of temporal signals of arc voltage. Finally a statistical analysis for the validation of the obtained experimental results was carried out. As a result of the investigation, the effectiveness of the method proposed as a new way for the analysis of stability is demonstrated. The research can contribute towards a new standard to evaluate the stability in welding processes.  相似文献   

5.
传统的短路过渡过程一般认为整个过程只存在一次引弧. 但是文中通过对GMAW短路过渡的高速摄像照片进行观察发现了一个新现象——即短路过渡过程并不是一次引弧完成的,而是存在二次引弧现象. 结果表明,当熔滴颈缩断裂的瞬间,焊丝端部与脱落熔滴尾部之间存在一定浓度的高温金属蒸气,会发生一次短暂的电弧燃烧过程. 此电弧随着脱落熔滴逐渐没入焊接熔池而消失. 随后会以保护气体作为介质进行下一次引弧(二次引弧),此次引弧也是传统短路过程的引弧阶段. 由电流波形可知,在熔滴颈缩附近存在两次短路电流波形,一次波形为传统的短路峰值电流,二次波形则是由于金属蒸气短暂引弧造成的.  相似文献   

6.
为解决高强度Cr-Ni奥氏体焊丝脉冲GMAW电弧挺度不足,熔滴过渡不稳定的问题,文中采用高速摄像手段对Ar/He/CO2不同组合气体保护下的脉冲GMAW电弧形态与熔滴过渡进行了对比研究,以期优化混合气体成分.结果表明,氩气弧熔滴过渡容易,但电弧漂移、挺度差;氦气和CO2气体的加入可提高电弧挺度、增大电弧能量、熔滴过渡变为1脉多滴,先一个大滴,接着几个小滴;氦气的比例越大,第一个熔滴的尺寸越大;CO2气体可克服阴极斑点漂移,但比例不能超过5%;40% Ar+58% He+2% CO2三元组合的电弧挺度大,熔滴过渡均匀平稳,是奥氏体焊丝脉冲GMAW厚板焊接较理想的混合气体组分.  相似文献   

7.
金属粉芯型药芯焊丝熔滴过渡及飞溅观察分析   总被引:3,自引:3,他引:0       下载免费PDF全文
王皇  刘海云  王宝  王勇  张英乔 《焊接学报》2012,33(10):83-86
采用高速摄影技术对金属粉芯型药芯焊丝的熔滴过渡及飞溅进行观察分析,总结了金属粉芯型药芯焊丝在试验参数下的熔滴过渡类型和特征以及飞溅类型和特征,阐述了熔滴过渡特征以及飞溅特征产生的原因.结果表明,采用100%CO2气体保护时,焊接过程中电弧电压波动较大,熔滴过渡不稳.以排斥过渡为主,少量细颗粒过渡和爆炸过渡,焊接飞溅大;采用5%CO2+95%Ar保护时,熔滴过渡为单一射滴过渡,熔滴过渡平稳,电弧稳定,焊接飞溅小;金属粉芯型药芯焊丝飞溅形式主要包括:气泡放出型飞溅、缩颈飞溅、熔滴爆炸飞溅以及电弧力引起的飞溅.  相似文献   

8.
CO2焊短路过渡过程控制策略及实施方案探讨(二)   总被引:5,自引:3,他引:2  
王伟  曹阳  朱六妹 《电焊机》2001,31(4):3-8
在分析CO2焊飞溅产生及焊缝成形机理的基础上,从非电器因素和电器因素2个角度出发,探讨了CO2焊短路过渡过程控制的策略、原理及特点,提出了恒频短路过渡智能控制方法的实施方案,该方案能有效抑制飞溅。改善焊缝成形,并具有控制简单、易于实现等特点,对逆变式CO2气保焊机的研制具有一定的参考作用。  相似文献   

9.
从波形控制参数的角度分析了影响短路过渡GMAW焊接稳定性的因素,并在此基础上设计了一种短路电流上升斜率可调节的多斜率波形控制方法。结果表明,通过对各阶段波控参数精确的调节,可以为适应不同的工艺条件而微调焊接工艺规范的情况下通过调节短路电流的上升速度和控制时间,增加规范的适应性,保持焊接过程的稳定性;有效的提高GMAW的焊接性能,可以更好的满足不同的焊接工艺的要求。  相似文献   

10.
An investigation was conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O2 content in the Ar/O2 gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless steel. It was concluded that the mixture of the shielding gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. Firstly, through the modification of the radius of curvature at the joint between the welding toe and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O2 content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures.  相似文献   

11.
Abstract

The metal transfer behaviour of self-shielded flux cored wire and the resultant welding spatter were investigated by using a high speed camera. Three modes of metal transfer were found, i.e. bridging transfer without arc interruption in explosive form or by surface tension, globular repelled transfer and droplet transfer, while the former two modes played a key role in the weld metal transfer. Correspondingly, the bridge explosion, discontinuous globular repelled process and the misalignment of droplets transfer were the main factors causing the welding spatter.  相似文献   

12.
Abstract

Some problems are reported concerning the observation of the weld pool and effects of the power source characteristic on arc stability in CO2 short circuiting arc welding. First, the effect of a power source with a constant voltage characteristic on CO2 short circuiting arc welding is investigated by analysing the behaviour of the voltage and the current. From the results of this analysis, the cause of spatter generation is identified. A new power source characteristic is then proposed to improve the stability and the self-regulation of the arc. By adjusting the power source characteristic, the metal transfer can be stabilised in the CO2 short circuiting arc welding process, i.e. the present authors have developed a power source having a non-linear characteristic. Its performance is verified by carrying out experiments.  相似文献   

13.
高频交变磁场对大电流GMAW熔滴过渡和飞溅率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在熔化极气体保护焊过程中,采用大送丝速度,增大焊接电流和焊丝伸出长度是提高焊接熔敷率的直接途径.但当熔滴过渡转变为旋转射流过渡时,电弧不稳,飞溅增大,焊缝成形变差.施加不同频率的纵向交变磁场,对焊缝成形进行控制.采用高速摄像技术,拍摄焊接过程中的电弧形态和熔滴过渡,研究不同频率的磁场对熔滴过渡和焊接飞溅率的影响规律.结果表明,熔滴过渡形式不同,产生飞溅的机理不同;外加频率为1 000 Hz纵向交变磁场时,电弧的旋转半径减小,电弧的挺度增大,旋转射流过渡时电弧更稳定,焊接飞溅率降低,焊缝成形改善.  相似文献   

14.
ABSTRACT

A novel molten wire tungsten inert gas welding process was presented. In this process, a welding arc is used to melt the workpiece, and a melting arc is used to melt the feeding wire. Metal transfer is separated from the melting of the wire and the workpiece, and the arcs are stable no matter the droplet transfer mode is spraying or globular. The spatter rate in the process is close to zero. Mechanical properties of low carbon steel joint bonded with this process are superior to those bonded with the metal inert gas welding process.  相似文献   

15.
Abstract

Among all process variables in gas metal arc welding (GMAW) process, welding current is the most influential variable affecting heat input and weld quality. Its dependence on other process variables in GMAW and universal gas metal arc welding (UGMAW) processes (which makes use of a specially designed torch to preheat the filler wire independently, before its emergence from the torch) has been investigated using four factor five level central composite rotatable design to develop relationship for predicting welding current, which enables to quantify the direct and interactive effects of four numeric factors, namely wire feedrate, open circuit voltage, welding speed and electrode stickout and one categorical factor preheat current. Mathematical models developed show that welding current increased linearly with increaseing wire feedrate and open circuit voltage, whereas it decreased with increasing electrode stickout and preheat current. Numerical optimisation was carried out, and the optimal solutions generated indicate that under the same input conditions higher deposition rates are achievable in UGMAW process.  相似文献   

16.
Summary

Undercut and/or humping are generated when the arc length in high-speed pulsed MAG welding is too high, and spatter is generated if it is too low. Refinement of the droplets from the wire and simultaneous maintenance of one droplet transfer per pulse avoid short-circuiting in a short arc and enable spatter and highspeed/high-efficiency welding to be rendered compatible with each other. The requirements are to maintain a stable droplet shape during one droplet transfer per pulse, to maximise the welding speed limit without spatter generation, and to develop a technology for arc length shortening at the limit of short-circuiting by wire droplet refinement as objectives basically centred on pulsed MAG welding. This paper describes an investigation of the factors controlling droplet transfer through a division being made into the driving force imparted to the droplets and the deformability of the weld metal receiving this force as well as a method of droplet refinement based on resolution of these aspects. Through the simple rectangular wave pulse of a high peak current being set for a short time using an inverter-type pulsed power source at a constant wire diameter to increase the electromagnetic pinch force, one droplet transfer per pulse is possible on condition that the droplet volume is reduced by around 30% as compared with that obtained using a conventional power source with a chopping transistor on the secondary side. To increase the droplet deformability, the wire composition can be changed to achieve one droplet transfer per pulse on condition that the droplet volume is reduced by 20%. These droplets also show the same surface tension as conventional droplets as well as a lower viscosity coefficient. Through a combination of a pulsed current waveform and improved wire properties, the droplet volume can be reduced to around one half that of conventional droplets. The critical speed of spatter- and defect-free welding is then increased as an improvement immediately applicable on an actual automotive mass production line.  相似文献   

17.
18.
Abstract

This paper describes the use of a variant of GMAW process named as UGMAW (universal gas metal arc welding) process for single layer stainless steel cladding, which makes use of a specially designed torch to preheat the filler wire, using an auxiliary welding power source, before its emergence from the torch. The experimental work undertaken was that of single layer cladding of 12 mm thick low carbon steel with the austenitic stainless steel 316L solid filler wire of 1·14 mm diameter. Dependence of dilution was investigated using four factor five level central composite rotatable design to develop relationship for predicting dilution, which enables to quantify the direct and interactive effects of four numerical factors, namely, wire feed rate, open circuit voltage (OCV), welding speed, electrode stickout and one categorical factor, preheat current. External preheating of the filler wire in UGMAW process resulted in greater contribution of arc energy by resistive heating owing to which significant drop in the main welding current and hence low dilution values were observed. Numerical optimisation was carried out and the optimal solutions generated indicate that for same levels of dilution, higher deposition rates are achievable in UGMAW process, thus making it a good choice for low cost surfacing applications.  相似文献   

19.
Abstract

Metal transfer phenomena and spatter generation in CO2 arc welding with a solid wire were investigated, and a low spatter welding process using a high frequency pulse rectangular current was developed. The optimal conditions of high frequency pulse CO2 arc welding were determined to be a peak current of 450–550 A and pulse frequency of 450–750 Hz. These high frequency pulse currents influenced the droplet oscillation due to resonance between the applied pulse frequency and the natural frequency of the droplet. A droplet was regularly transferred by 9–11 pulses, and the average interval of metal transfer was ~16 ms, which was half of that in conventional CO2 arc welding. The average droplet weight is 34 mg, showing a large reduction in comparison with that of the conventional method. As a result, the total spatter weight was reduced by 70% in comparison with the conventional method, and particularly large spatters more than 0·5 mm in diameter were reduced from 25 to 3 mg s?1.  相似文献   

20.
对于逆变弧焊电源,采用基于 DSP 的全数字控制策略.针对短路过渡 CO2 气体保护焊特点,提出了准恒压全数字化新型波形控制策略,不再根据输出电压区分短路和燃弧过程,使得短路和燃弧过程过渡自然,适应于所有的焊接工艺,提高了系统的适应性.同时在短路初期采用瞬态电流抑制技术减少了飞溅,建立了包含实时燃弧能量补充机制的全数字化电压电流瞬时反馈的全数字三闭环控制模型.结果表明,所提出的全数字化软开关控制策略灵活、可靠;所采用的数字波形控制技术适应性好、灵活、焊接过程稳定、焊缝成形优良.
Abstract:
According to the characteristics of short circuit transfer of CO2 gas metal arc welding, a novel full digital waveform control scheme called quasi-constant voltage control is presented for inverter type arc welding power based on DSP. Short circuit and arc ignition process are not judged according to the output voltage and transfer process between them is smooth. The strategy is also applied to all welding conditions. Initial current at the instant of short-circuit is suppressed to reduce spatter generation. A triple closed loop control model including real time energy compensation for the arc state based on instantaneous voltage and current feedback control is estabhshed. Flexibility and reliability of the proposed fully digitalized softswitching control strategy is validated by experimental results of 400 A welding machine. The experimental results show that proposed digital waveform control scheme is applicable for different wire feeding speed conditions, and the welding process is stable and the welding bead appearance is good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号