共查询到20条相似文献,搜索用时 15 毫秒
1.
《Science & Technology of Welding & Joining》2013,18(4):288-294
AbstractThe objectives of this research are to investigate penetration characteristics, to clarify welding phenomena and to develop high quality welding procedures in bead on plate welding of type 304 austenitic stainless steel plates with a 10 kW fibre laser beam. The penetration depth reached 18 mm at the maximum at 5 mm s?1. At 50 mm s?1 or lower welding speeds, however, porosity was generated at any fibre laser spot diameter. On the other hand, at 100 mm s?1 or higher welding speeds, underfilling and humping weld beads were formed under the conventionally and tightly focused conditions respectively. The generation of spatters was influenced mainly by a strong shear force of a laser induced plume and was greatly reduced by controlling direction of the plume blowing out of a keyhole inlet. The humping formation was dependent upon several dynamic or static factors, such as melt volume above the surface, strong melt flow to the rear molten pool on the top surface, solidification rate and narrow molten pool width and corresponding high surface tension. Its suppression was effective by producing a wider weld bead width under the defocused laser beam conditions or reduction of melt volume out of keyhole inlet under the full penetration welding conditions. Concerning porosity, X-ray transmission in situ observation images demonstrated that pores were formed not only from the tip of the keyhole but also at the middle part because of high power density. The keyhole behaviour was stabilised using a nitrogen shielding gas, resulting in porosity prevention. Consequently, to produce high quality welds in 10 kW high power fibre laser welding, the reduction procedures of welding defects were required on the basis of understanding their formation mechanism, and 10 kW fibre laser power could produce sound deeply penetrated welds of 18 mm depth in a nitrogen shielding gas. 相似文献
2.
《Science & Technology of Welding & Joining》2013,18(8):749-753
AbstractA weakly ionised plasma can be generated in stainless steel welding with a 10 kW fibre laser beam at the ultra high power density of ~1 MW mm–2 in Ar shielding gas. The objectives of this study are to obtain a fundamental knowledge of optical interaction between a fibre laser beam and the weakly ionised plasma, and to evaluate effects of the plasma on weld penetration. The optical interaction was investigated by the high speed video observation or the power meter measurement of another probe fibre laser beam, which passed horizontally through the weakly ionised plasma induced during bead on plate welding of a 20 mm thick type 304 plate with a 10 kW fibre laser beam of 0˙9 MW mm–2 in power density. The probe laser observed was refracted at 0˙6 mrad angle in average, which was much lower than the 90 mrad divergence of the focused fibre laser beam. The attenuation of the probe laser was measured to be ~4%, which was not mainly caused by Inverse Bremsstrahlung but by Rayleigh scattering. Moreover, a stable laser welding process could be produced at such ultra high power density that 11˙5 mm deep penetration was obtained even if the laser peak power was modulated 1 ms periodically from 10 to 8˙5 kW. It was consequently considered that the optical interaction between the 10 kW fibre laser beam and the weakly ionised plasma was too small to exert the reduction in weld penetration. 相似文献
3.
《Science & Technology of Welding & Joining》2013,18(2):127-137
AbstractThe use of active flux in tungsten inert gas (TIG) welding is known to increase its weld depth. The present paper involves study of active flux laser beam welding (ALBW) of austenitic stainless steel sheets with respect to its effect on plasma plume, microstructure and mechanical properties of the resultant weldments. ALBW performed with SiO2 as the flux significantly modified shape of the fusion zone (FZ) to produce narrower and deeper welds. Plasma plume associated with the process was considerably smaller and of lower intensity than that produced during bead on plate laser beam welding (LBW). Flux addition during LBW produced thin and rough weld bead associated with humping. The development of such a weld bead is cause by reversal in the direction of Marangoni flow by oxygen induced inversion of surface tension gradient, widely fluctuating plasma plume and presence of oxides on the weld pool surface preventing free flow of the melt. Active flux laser weldments exhibited lower ductility than that of bead on plate laser weldments. 相似文献
4.
《Science & Technology of Welding & Joining》2013,18(1):53-58
AbstractLaser welding with filler wire additions could be used in restoration of components that are of high cost or sometimes difficult to procure, such as steam turbine blades in fossil fuel power plants. In the present work, machined V groove specimens were employed to simulate laser repair of Carpenter 636 stainless steel (SS), which has a similar composition to a blade material, type 422 SS. Before repair welding, a heat treatment procedure including solution and temper treatments of the specimens was carried out according to the mechanical and microstructural analyses of a used blade after 20 years service at about 540° C. Tensile, impact, and fatigue crack growth tests of weld repairs using 410 SS filler wire were conducted. The weld repairs exhibited an impact toughness similar to that of the base metal and a lower fatigue crack growth rate than the base metal. However, the lower hardness associated with 410 SS filler metal led to tensile fracture in the weld metal of repaired specimens. Accordingly, the use of 410 SS filler metal for repair welding type 422 SS components should be limited to regions under low stress. 相似文献
5.
《International Heat Treatment & Surface Engineering》2013,7(3):124-134
AbstractErosive abrasive wear is caused by high speed impact of particles entrained in a fluid system on the surfaces of components such as boilers and furnaces. Erosive abrasive wear in boilers results from the impact of hard particles such as ash or clinker entrained in flue gases and can lead to serious damage. The life of boiler and furnace components encountering erosive abrasive wear in service, which are most commonly fabricated from carbon steels, can be improved by hardfacing with a wear resistant material. The effects of wear parameters such as particle size, flux and velocity on the erosive abrasive wear behaviour of a stainless steel surface produced by the plasma transferred arc hardfacing have been investigated using an experimental design approach. The wear resistance of the stainless steel surface was found to be twice that of the carbon steel substrate. 相似文献
6.
《Science & Technology of Welding & Joining》2013,18(4):335-343
AbstractWelded components are subjected to solution annealing heat treatment for achieving full stress relief and restoration of mechanical properties and corrosion resistance. During such heat treatments, optimum cooling rate has to be selected because very slow cooling rate will result in sensitisation and susceptibility to intergranular corrosion whereas fast cooling will result in reintroduction of residual stress. For 316 LN stainless steel which is welded using modified E316-15 electrodes (0·045–0·055%C), critical cooling rate above which there is no risk of sensitisation is 75 K h?1. This paper presents a novel laser surface treatment which suppresses sensitisation in weld metal, even at a slower cooling rate of 65 K h?1. Experiments involving laser surface melting were carried out with 150 W average power pulsed Nd:YAG laser and 10 kW CO2 laser, in both continuous wave and pulse modulated (100 Hz) modes. Best results were obtained when surface melting was performed with high frequency pulse modulated CO2 laser beam. The processed weld metal remained unsensitised after solution annealing followed by slower rate of cooling at 65 K h?1. Numerical simulation study was performed with ANSYS 7·0 software to understand the physical reason behind the difference in sensitisation behaviour of CO2 laser melted specimens under continuous wave and high frequency pulse modulated conditions and the predictions were validated using results of electron backscattered diffraction studies. Weld metal specimens treated with high frequency pulse modulated CO2 laser clearly showed evolution of fine grains near the fusion boundary region which enhanced sensitisation resistance. 相似文献
7.
《Science & Technology of Welding & Joining》2013,18(2):211-218
AbstractLaser welding studies on 12 mm thick Nb microalloyed steels were done using a 25 kW CO2 laser at welding speeds of up to 3 m min?1 with the aim of identifying the influences of Nb and carbon on laser weldability and weld properties. Welds were examined for solidification flaws, penetration characteristics, microstructure and mechanical properties. Solidification cracking did not appear to be influenced by carbon or Nb in the ranges studied when welding at power levels between 22 and 25 kW. The area fraction of martensite was shown to increase with decreasing energy input and increasing carbon content. Weld metal toughness was improved by reducing carbon content in the range 0·08–0·05%C but was little influenced by Nb. Weld metal and heat affected zone hardness levels were reduced, as expected, by reducing carbon content. The results show that increasing Nb content leads to higher strength material without significant loss of toughness, while lowering carbon content can improve toughness without loss of strength. Thus low carbon Nb microalloyed steels with about 0·05%C can achieve a good combination of parent plate and laser weld properties and appear to be suitable for high power laser welding situations. 相似文献
8.
《Science & Technology of Welding & Joining》2013,18(5):467-471
AbstractIn the present study, a high chromium white iron was diffusion bonded to an austenitic stainless steel, AISI 316L. The effects of bonding temperature and holding time at the reached temperature on microstructural developments across the joint region were investigated. After diffusion bonding, microstructural analysis including metallographic examination, energy dispersive X-ray (EDX), X-ray, microhardness measurements and shear strength was performed. From the results, it was seen that bonding temperature with holding time was effective on the formation of carbide (M3C) and width of the diffusion zone that affected the shear strength of the bonds. 相似文献
9.
《International Journal of Cast Metals Research》2013,26(1-4):45-48
AbstractSemisolid metal processing with the cooling plate technique is one of the key technologies for producing advanced materials. The multitude of cast iron families with their wide range of mechanical properties and relatively low costs combined with the advantage of semisolid processing, give the merit of producing high quality cast components from cast iron. This research is based on high speed steel with high vanadium and carbon contents, which has not been studied enough. The authors researched the effect of semisolid casting with the cooling plate technique on microstructures and properties, wear resistance and mechanical properties, for example, hardness and tensile stress, of this alloy. 相似文献
10.
《Science & Technology of Welding & Joining》2013,18(5):526-537
AbstractThree-dimensional (3D) viscoplastic flow and temperature field during friction stir welding (FSW) of 304 austenitic stainless steel were mathematically modelled. The equations of conservation of mass, momentum and energy were solved in three dimensions using spatially variable thermophysical properties using a methodology adapted from well established previous work in fusion welding. Non-Newtonian viscosity for the metal flow was calculated considering strain rate and temperature dependent flow stress. The computed profiles of strain rate and viscosity were examined in light of the existing literature on thermomechanical processing of alloys. The computed results showed significant viscoplastic flow near the tool surface, and convective transport of heat was found to be an important mechanism of heat transfer. The computed temperature and velocity fields demonstrated strongly 3D nature of the transport of heat and mass indicating the need for 3D calculations. The computed temperature profiles agreed well with the corresponding experimentally measured values. The non-Newtonian viscosity for FSW of stainless steel was found to be of the same order of magnitude as that for the FSW of aluminium. Like FSW of aluminium, the viscosity was found to be a strong function of both strain rate and temperature, while strain rate was found to be the most dominant factor. A small region of recirculating plasticised material was found to be present near the tool pin. The size of this region was larger near the shoulder and smaller further away from it. Streamlines around the pin were influenced by the presence of the rotating shoulder, especially at higher elevations. Stream lines indicated that material was transported mainly around the pin in the retreating side. 相似文献
11.
《Science & Technology of Welding & Joining》2013,18(5):566-573
AbstractThe aim of the present study was to investigate the effect of specific oxide fluxes on the surface appearance, weld morphology, retained δ ferrite content, hot cracking susceptibility, angular distortion and mechanical properties obtained with the tungsten inert gas (TIG) process applied to the welding of 5 mm thick austenitic stainless steel plates. An autogenous gas tungsten arc welding process was applied to stainless steels through a thin layer of activating flux to produce a bead on plate welded joint. The MnO2 and ZnO fluxes used were packed in powdered form. The experimental results indicated that the 80% MnO2–20% ZnO mixture can give full penetration and also a satisfactory surface appearance for type 304 stainless steel TIG flux welds. TIG welding with MnO2 and/or ZnO can increase the measured ferrite number in welds, and tends to reduce hot cracking susceptibility in as welded structures. It was also found that TIG flux welding can significantly reduce the angular distortion of stainless steel weldments. 相似文献
12.
《Science & Technology of Welding & Joining》2013,18(2):124-130
AbstractFriction welding was carried out between TiNi alloy and austenitic stainless steel with and without a Ni interlayer. When TiNi alloy was welded to stainless steel without the Ni interlayer, a large amount of brittle Fe2Ti intermetallic compound was formed at the weld interface. The formation of this brittle compound led to degradation of the joint strength. The Ni interlayer changed the microstructures at the weld interface and improved the joint strength. A fracture occurred at the interface between Ni and TiNi. The interface between Ni and TiNi was free from Fe2Ti and consisted of mainly TiNi3 and TiNi. After TiNi3 was formed as the reaction layer, a eutectic reaction occurred between the TiNi3 and TiNi base alloy. A reaction layer with a eutectic structure tends to form at the periphery, where the temperature would be higher than that of the central region. 相似文献
13.
《Science & Technology of Welding & Joining》2013,18(6):750-759
AbstractUndercut and humping bead are the common defects that limit the maximum welding speed of tandem pulsed gas metal arc (GMA) welding. In order to increase the maximum welding speed, effects of the inclination angle, interwire distance and welding current ratio between the leading wire and trailing wire on bead formation in high speed welding are investigated. The undercut and humping bead is attributed to the irregular flow of molten metal towards the rear part of the weld pool. This irregular flow can be prevented by the trailing wire with a push angle from 5° to 13° , which provides an appropriate component of arc force in the welding direction. The irregular flow is also related to the distance between the leading wire and the trailing wire, and the flow becomes regular when the distance is in the range 9–12 mm. Moreover, the stabilisation of the bulge of the weld pool between the two wires, the presence of enough molten metal below the trailing arc, and the reduced velocity of molten metal flow towards the rear part of the weld pool, are essential to increase the maximum welding speed. These conditions can be obtained by adjusting the ratio of the leading arc current to the trailing arc current. A maximum welding speed as high as 4–4·5 m min?1 is achieved by setting the current ratio to a value ranging from 0·31 to 0·5. 相似文献
14.
《Science & Technology of Welding & Joining》2013,18(8):708-716
AbstractIn non-pulsed gas metal arc welding (GMAW), spatter can be reduced by controlling the short circuit current to a low level just before the re-arcing. The controlled bridge transfer (CBT) process, which optimises the accuracy of predicting the re-arcing in real time in response to the metal transfer, realises stable, low spatter level. In this research, the methods for controlling short circuit transfers to minimise spatter and realise stable arcs in GMAW of stainless sheet using argon rich shielded gases are investigated. The new CBT process has been developed by applying the specific arc length estimation method that is not affected by abnormal rise in arc voltage. This process can suppress the spatter generation caused by a fluctuation in the vibratory motion of the weld pool or inaccurate prediction of the re-arcing in the succeeding short circuit/re-arcing cycle, and thereby spatter free GMAW in the short circuit transfer mode can be carried out even on stainless steels. 相似文献
15.
《Science & Technology of Welding & Joining》2013,18(6):490-504
AbstractThis paper concerns resistance spot welding (RSW) of two types of thin stainless steel sandwich sheet. The cores of these materials, made of stainless steel fibres, are highly porous (> around 85 vol.-%) and have low thermal and electrical conductivities. However, these conductivities change during the compression and heating associated with RSW. A sequentially coupled finite element model has been developed, in which the crushed core is treated as a continuum, with properties which vary throughout the process. It is shown that a constitutive relationship of the type commonly used for crushable foams can be successfully employed to simulate the deformation of the sandwich sheets. The thermoelectrical part of the model incorporates the effects of the associated phase transformations and changes in interfacial conductance. It is shown that the predictions are broadly consistent with data obtained during welding experiments. The model is used to explore the effects of welding parameters on weld characteristics (weld pool formation and weld nugget shape). 相似文献
16.
Analysis on characteristics of laser induced plasma during laser welding of A304 stainless steel sheet 下载免费PDF全文
A group of the stainless steel laser welding was performed using continuous wave (CW) laser and pulsed laser. During the welding process the laser induced plasma behavior was recorded by high-speed video camera, while the plasma spectrum was acquired by the spectrometer. The plasma temperature was calculated based on the spectroscopic analysis of the optical emission and the results show that different output mode of laser source led to big difference of plasma temperature. The high-speed video images showed that the plasma was very steady and kept certain strength in CW laser welding, while the plasma erupted a little later after the laser peak arising during the pulsed laser welding. During a period of time about 2ms just after the laser peak arising during the pulsed laser welding, much more laser energy reached the workpiece. This made the workpiece fully penetrated with a lower average power. 相似文献
17.
《Science & Technology of Welding & Joining》2013,18(8):681-690
AbstractIn the present work, the welding parameters of tungsten inert gas (TIG) and activated tungsten inert gas (ATIG) welding processes were compared on duplex stainless steel with two protective gases (Ar and ArHeN2). The addition of an activating flux can improve the TIG welding process. The ATIG process involves an increase in the penetration as well as a reduction in the number of passes for a thickness higher than 2 mm for stainless steel or other metallic materials. Metallographic observations, chemical analyses and mechanical tests were performed. The results show the importance of the welding parameters, the protective gas and the use of a flux on the characteristics of the weld beads, its microstructure, its hardness and its behaviour in corrosion after welding. 相似文献
18.
《Science & Technology of Welding & Joining》2013,18(1):87-92
AbstractIn welding of high nitrogen steel (HNS), it is essential to control the nitrogen content and porosity in the weld metal. In this paper, the influence of shielding gas composition and heat input on the nitrogen content and porosity in the weld metal of HNS was investigated by gas tungsten arc welding. The experimental results indicate that the weld nitrogen content increases as N2 in the shielding gas is increased in the same heat input of welding. The weld nitrogen content decreases with increasing the heat input for pure argon used as a shielding gas, whereas it increases with increasing the heat input for the shielding gas including some nitrogen. The nitrogen pore can be avoided when the nitrogen content in the shielding gas is <4% in the heat input range of 528–2340 J mm–1. 相似文献
19.
20.
《Science & Technology of Welding & Joining》2013,18(1):78-86
AbstractLaser welding is a very attractive technique to join different alloys at the industrial level, due to its low heat input, high flexibility, high weld quality and high production rate. In this work, the weldability of the aluminium alloy AA 5083 with a high power diode laser has been tested. Concisely, samples were subjected to lineal treatments of laser radiation, with the objective of studying the properties of the bead on plate welds generated. The main objective of the present work has been to study the influence of both the processing rate and the superficial treatment of the AA 5083 samples, on the morphological, microstructural and corrosion properties of the laser weld beads. The sizes of the welds were higher as the processing rate was decreased. The weld beads were seen to have better behaviour against corrosion than the base metal due to the microstructural refinement. It was also verified that a blasting process before processing gave beads with lower size but better corrosion resistance than the application of a black layer, due to the minimisation of the magnesium evaporation in this former superficial treatment. 相似文献