首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The oxidation kinetics of a cermet composed of Ni–Cu alloy and nickel ferrite was studied by thermogravimetry at 960 °C under oxygen in the range 0.5–77 kPa. After an initial mass increase up to 15 g/m2 due to oxidation of surface metallic particles, the mass change was attributed to both outwards NiO growth and internal oxidation. Above 40 g/m2, the NiO scale thickness remained constant and the oxidation kinetics followed a complete parabolic law. The variations of the kinetic rate with oxygen partial pressure allowed to propose mechanisms, rate-controlling steps and kinetic laws in both transient and long term oxidation periods.  相似文献   

2.
Abstract

The solution treatment in Al–Si system casting alloys is usually performed to obtain supersaturated solid solution and spheroidising Si particles. It can be inferred that a high temperature solution treatment enhances mechanical properties without any special apparatuses or techniques. However, it is well known that the solution treatment close to an eutectic temperature causes local melting. In this study, the change in microstructure of Al–Si–Cu casting alloys, which have been solution treated at temperatures ranging from 773 to 824 K, have been investigated from a viewpoint of Cu concentration and the distributions of micropores and locally melt regions due to eutectic reaction. Tensile and hardness tests were carried out to discuss the relationship between mechanical properties and microstructures. In addition to a surface observation, an internal microstructural observation was carried out using the high resolution X-ray computed tomography. The burnt regions during the high temperature solution treatment were identified to be Cu rich. Porosity increased with increasing the solution treatment temperature. The porosity in the sample solution treated above a binary eutectic temperature was confirmed to be >0˙2 vol.-%. The Cu concentration in the α-phase increased below the binary eutectic temperature.  相似文献   

3.
4.
ABSTRACT

Fundamental understanding of the intermetallic phase formation is the key for enhancing the robustness and reliability of the brazed joints. The paper addresses the phase transformations during brazing of the Hastelloy X nickel-base superalloy using the quinary Ni–13Cr–4.5Si–4.2Fe–2.8B (wt-%) braze alloy. The mechanisms of intermetallic formation via solidification and solid-state precipitation are discussed. The athermal solidification zone (ASZ) is featured by the formation of brittle and hard borides and boro-silicides that are formed via eutectic reactions. However, in contrast to other commercial B-bearing Ni-based filler alloys, it was identified that the presence of a high-volume fraction of eutectic gamma solid solution between boride phases within the joint centreline can alleviate the deleterious effect of the intermetallic phases on the joint toughness.  相似文献   

5.
Abstract

It is difficult to weld the dissimilar material combination of aluminium alloys and low alloy steels using fusion welding processes, on account of the formation of a brittle interlayer composed of intermetallic compound phases and the significant difference in physical and mechanical properties. In the present work an attempt has been made to join these materials via the friction welding method, i.e. one of the solid phase joining processes. In particular, the present paper describes the optimisation of friction welding parameters so that the intermetallic layer is narrow and joints of acceptable quality can be produced for a dissimilar joint between Al-Mg-Si alloy (AA6061) and Ni-Cr-Mo low alloy steel, using a design of experiment method. The effect of post-weld heat treatment on the tensile strength of the joints was then clarified. It was concluded that the friction time strongly affected the joint tensile strength, the latter decreasing rapidly with increasing friction time. The highest strength was achieved using the shortest friction time. The highest joint strength was greater than that of the AA6061 substrate in the as welded condition. This is due to the narrow width of the brittle intermetallic layer generated, which progressed from the peripheral (outer surface) region to the centreline region of the joint with increasing friction time. The joints in the as welded condition could be bent without cracking in a bend test. The joint tensile strength in the as welded condition was increased by heat treatment at 423 K (150° C), and then it decreased when the heat treatment temperature exceeded 423 K. All joints fractured in the AA6061 substrate adjacent to the interface except for the joints heated at 773 K (500° C). The joints fractured at the interface because of the occurrence of a brittle intermetallic compound phase.  相似文献   

6.
A silicide coating was prepared on the surface of the Nb521 alloy by the complex pack cemented method. The oxidation resistance properties of the present coating were exeamed by the static oxidation tests at 1 700 ℃in air. The compositions and the microstructures of the coating before and after test were characterised and analysed through scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy dispersive X-ray spectrometry (EDS) and electron probe microanalysis (EPMA), respectively. The present silicide coating can provide an effective protection for the Nb alloy for 25 h at 1 700 ℃ in air. The results show that the oxidation kinetics of the present silicide coating is parabolic. The diffusion of Si leads to the phase transformation and evolution during the oxidation.  相似文献   

7.
Abstract

The influence of Gd and B on the solidification behaviour and weldability of Ni–Cr–Mo alloy UNS N06455 has been investigated by Varestraint testing, differential thermal analysis and microstructural characterisation. These alloys are currently being developed as structural materials for nuclear criticality control in applications requiring transportation and disposition of spent nuclear fuel owned by the US Department of Energy. The Gd containing alloys were observed to solidify in a manner similar to a binary eutectic system. Solidification initiated with a primary L→y reaction and terminated at ~1258°C with a eutectic type L→y+Ni5Gd reaction. The solidification cracking susceptibility of the Gd containing alloys reached a maximum at ~1 wt-%Gd and decreased with both higher and lower Gd additions. Low cracking susceptibility at Gd concentrations below ~1 wt-% was attributed to a relatively small amount of terminal liquid that existed over much of the crack susceptible solid+liquid zone. Low cracking susceptibility at Gd concentrations above ~1 wt-% was attributed to a reduced solidification temperature range and backfilling of solidification cracks. The addition of B above the 230 ppm level leads to the formation of an additional eutectic type reaction at ~1200°C and the secondary phase within the eutectic type constituent was tentatively identified as Mo3B2. The B containing alloys exhibited a three step solidification reaction sequence consisting of primary L→y solidification, followed by the eutectic type L→y+Ni5Gd reaction, followed by the terminal eutectic type L→y+Mo3B2 reaction. Boron additions had a strong, deleterious influence on solidification cracking susceptibility. The high cracking susceptibility was attributed to extension of the crack susceptible solid+liquid zone induced by the additional eutectic type L→y+Mo3B2 reaction and extensive wetting of the grain boundaries by the solute rich liquid. Simple heat flow equations were combined with solidification theory to develop a relation between the fraction liquid f L and distance x within the solid+liquid zone. Information on the phenomenology of crack formation in the Varestraint test were coupled with the calculated f Lx curves and were shown to provide useful insight into composition–solidification–weldability relations.  相似文献   

8.
With the objective of obtaining corrosion resistant coatings, ternary Ni–Sn–P alloy coatings were electrodeposited from a deep eutectic solvent and their composition, morphology and corrosion resistance were investigated as a function of electrodeposition potential. A comparison was made with a Ni–P binary alloy coating electrodeposited under similar conditions. Cyclic voltammetry, energy dispersive analysis of X-rays, potentiodynamic polarisation, open circuit potential-time and electrochemical impedance spectroscopy techniques were used for studying the electrodeposition behaviour, chemical composition and coatings corrosion performances, respectively. The chemical compositions of the ternary Ni–Sn–P alloy films contained about 4.4–10.3?wt-% Sn, 7.2–8.1?wt-% P and Ni (balance). X-ray diffraction patterns of the ternary Ni–Sn–P deposits revealed a single and broad peak, becoming wide with an increase in Sn content, showing that the structures of all the deposits were nanocrystalline or amorphous. Corrosion tests showed that ternary Ni–Sn–P alloy coatings exhibited considerably better barrier corrosion resistance than binary Ni–P coatings, and their corrosion resistance improved with an increase in Sn content.  相似文献   

9.
The following anomalies are theoretically analyzed: weakening of the protective ability of dense Cr2O3 film during its long-term thermal exposure (because of iron oxidation under the film); lowering of the heat resistance of Fe–Cr and Fe–Ni–Cr alloys during the oxidation (800°C) with an increase in the chromium content over 40 at. %; improving of the protective ability of the films formed at Fe–Ni alloys because of nickel oxidation under the dense FeO film; and the internal oxidation of the Fe 30Ni alloys under the FeO films with the internal formation of FeO oxides and spinel of NiFe2O4 type. It is shown that these anomalies can be explained, and the composition of the most heat-resistant alloys calculated, if one takes into account that associates with significantly stronger interatomic bonds than those in ideal solutions can form in solid solutions and cause unlimited solubility of the metallic components in each other.  相似文献   

10.
《金属精饰学会汇刊》2013,91(6):311-316
Abstract

A high phosphorus electroless nickel bath was used to prepare plain Ni–P and composite coatings containing submicrometre size silicon nitride particles. Deposits were characterised for their composition, morphology and electrochemical behaviour. Codeposition of particles in a Ni–P matrix has not influenced the phosphorus content (10 wt-%). Surface morphology of plain Ni–P deposits was smooth; the composite deposits became slightly rough with small nodules due to particle incorporation. Cross-sectional examination of composite coating revealed that the particles were uniformly distributed throughout the thickness of the coating. Potentiodynamic polarisation and electrochemical impedance studies were carried out in 3·5 wt-% sodium chloride solution in non-deaerated condition. Potentiodynamic polarisation studies showed that the corrosion current density value obtained for composite coatings is lower than that for plain Ni–P coatings. Electrochemical impedance spectroscopy studies showed that the coating resistance of the composite coating is higher than that of plain Ni–P coating. This was further confirmed by SEM analysis of corroded samples.  相似文献   

11.
Abstract

A cobalt based Phynox alloy has been oxidised in the 800–1100°C temperature range. Kinetic results show that the parabolic behaviour is followed under isothermal conditions. The scale growth mechanism of cobalt based Phynox alloy in air is consistent with a growth mechanism limited by the diffusion process in a growing Cr2O3 oxide scale. Thermal cycling tests show that the best scale adherence is found at 1000°C. This temperature permits a rapid chromium supply from the substrate to form a continuous chromia scale. A keying effect at the internal interface is promoted by the presence of silicon and molybdenum. At 900°C, CoCr2O4 cobalt containing oxide formation is favoured and leads to a bad scale adherence. At 1100°C, thermal cycling conditions lead to scale spallation and chromium depletion. Then, important weight losses are registered corresponding to the oxidation of cobalt and molybdenum to induce CoCr2O4 and CoMoO4 formation.  相似文献   

12.
《Scripta materialia》2004,50(2):243-248
New ZrCu-based high temperature shape memory alloys with Ms close to 500 K are under development. The shape memory behaviour of this material is compared to those of Ti–Ni–Zr and Ti–Ni–Hf alloys. The optimal compositions show a shape recovery of not less than 3% at temperatures above 470 K.  相似文献   

13.
Yongjun Lü  Min Chen 《Acta Materialia》2012,60(11):4636-4645
The crystallization of Ni90Si10 drops has been studied using molecular dynamics simulations. The atoms in the surface monolayer of the drop prematurely pack into a long-range ordered structure prior to volume crystallization, whereas diffusion dynamics maintains characteristic liquid-like features until the onset of volume crystallization. This surface crystallization process arises from strong density layering in the direction perpendicular to the drop surface. Due to density oscillations induced by the surface layering a high density state is produced in the drop surface, which is analogous to the effect of high pressure and locally increases the crystallization temperature of the surface layer, ultimately initiating crystallization from the surface. Such a layered structure causes pressure oscillation near the surface that produce a decrease in surface tension with decreasing temperature. The high density crystalline nature of the surface does not thermodynamically favor volume crystallization, which occurs separately via homogeneous nucleation in the interior with further decreasing temperature.  相似文献   

14.
A redistribution of Cr atoms related to a phase decomposition (PD) caused by an isothermal annealing at 415 °C in a 15.15 at.% Cr Fe–Cr alloy was studied in an ex situ way by the conversion electrons Mössbauer spectroscopy. Analysis of the spectra in terms of a two-shell model enabled the determination of probabilities of 17 different atomic configurations and average numbers of Cr atoms within the first (1NN) and the second (2NN) neighbor shells vs. annealing time, separately. The annealing-time evolution of these numbers, expressed in terms of the CowleyWarren short-range order (SRO) parameters, was shown to follow the JohnsonMehlAvramiKolgomorov equation. The SRO parameter averaged over the 1NN–2NN shells was revealed to be linearly correlated with the average hyperfine field. Signatures in favor of the nucleation and growth mechanisms responsible for PD are also discussed.  相似文献   

15.
16.
《Intermetallics》1999,7(3-4):351-361
The microstructural evolution of lamellar Ti48Al–2Nb–2Cr during deformation at temperatures between 1000 and 1200 K was investigated by light optical and electron microscopy. The lamellar structure which initially covers more than 95% of the volume transforms during deformation into a globular structure consisting of equiaxed subgrains with a significant amount of large angle boundaries (<30%). The steady state subgrain size and the spacing of dislocations in the subgrain interior vary in inverse proportion to shear modulus normalized stress. Based on the steady state data the evolution of the volume fraction with globular (subgrain) structure and the characteristic spacings is quantified.  相似文献   

17.
《Corrosion Science》1999,41(2):213-227
The anodic oxidation of dilute Al–Cr alloys, containing 0.8 and 1.7 at% Cr, has been investigated in order to understand the oxidation behaviour of the alloying element and its influences on the film composition and morphology. The alloys reveal two stages of oxidation: an initial stage, in which only aluminium atoms are oxidized to form a chromium-free anodic alumina film, and a subsequent stage, in which both aluminium and chromium are oxidized, in their approximate alloy proportions, with generation of a chromium-contaminated anodic alumina film. In the first stage, chromium is enriched in a thin layer of alloy, immediately beneath the anodic film, to an amount corresponding to a layer of average thickness 1.5 nm and of average composition, Al–20 at% Cr. Following the oxidation of chromium, oxygen is produced electrochemically within the film at or near the alloy/film interface, probably associated with the development of chromium-rich clusters in the enriched alloy layer and, subsequently, formation of semiconducting chromium-rich oxide. Thus, the film material formed at the alloy/film interface by inward migration of O2- ions contains many oxygen-filled bubbles with associated high pressures. The chromium species present in the film migrate outward more slowly than Al3+ ions. Hence, a layer of chromium-free anodic alumina, which thickens as the film grows, is maintained adjacent to the film/electrolyte interface.  相似文献   

18.
《Scripta materialia》2004,50(6):835-838
The effects of ageing with and without deformation on shape memory effect and microstructures in Fe–14.8Mn–4.78Si–7.95Cr–4.16Ni–0.18C alloy were investigated. The shape memory effect after the ageing with deformation is much greater than that after ageing without deformation. The reason is that carbides after ageing with deformation is much smaller and lie mainly at grain boundaries.  相似文献   

19.
The oxidation behavior of an austenitic steel, type 1.4841, with a Cr content of 25 wt% and a high-Si content of 2.8 wt% was studied during isothermal oxidation at 1,286 K in air. A thick, crystalline Cr2O3 layer, on top of a much thinner, amorphous SiO2 layer, developed on the alloy substrate. After formation of a closed Cr2O3 scale, parabolic growth kinetics prevailed as long as the associated constant, steady-state Cr concentration in the alloy at the substrate/oxide interface of about 13 ± 1 wt% was maintained. Upon prolonged oxidation, successive cracking and spallation of the thickening oxide scale eventually led to breakaway oxidation, because the “bulk-”Cr concentration in the interior of the alloy dropped below the critical value required to ‘heal’ the protective oxide layer after oxide spallation. Application of a lifetime prediction model of the alloy substrate under isothermal oxidation conditions allowed determination of the breakaway-oxidation time as a function of alloy-sheet thickness, by employing the Cr volume-diffusion coefficient in the alloy and the parabolic growth-rate constant, both determined in the present study by fitting calculated to experimental Cr-depletion profiles for various oxidation times.  相似文献   

20.
A series of Ni–Cr–Al alloys was subjected to thermal cycling to 1100°C in air for up to 260 1-hr cycles. All alloys exhibited poor corrosion resistance. Repeated scale spallation led to subsurface alloy depletion in aluminum and, to a lesser extent, chromium. This caused transformation of the prior alloy three-phase structures (-Cr+-NiAl+-Ni) to single-phase -nickel solution. Destruction of the external scale allowed gas access to this metal, which was able to dissolve both oxygen and nitrogen. Inward diffusion of the two oxidants led to development of a complex internal-precipitation zone: Al2O3 and Cr2O3 beneath the surface, followed by Al2O3, then AlN, then AlN+Cr2N, and, finally, AlN alone in the deepest region. This distribution is shown to reflect the relative stabilities of the precipitates and the higher permeability of nitrogen. Diffusion-controlled kinetics were in effect initially, but mechanical damage to the internal-precipitation zone led to more rapid gas access and approximately linear kinetics in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号