首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract

A flow formed C-250 maraging steel tubing was welded by electron beam welded (EBW) process and subsequently age hardened. Conventional EB welding with high energy input had resulted in seriously inadequate percentage elongation of the weldment. With an additional prewelding stress relief treatment and EBW with a lower energy input, the elongation of the weldment showed significant improvement after being treated with age hardening. It was found that the tensile strength was increased by 12% and the percentage elongation was remarkably increased by 92%.  相似文献   

2.
Abstract

In the weld zone and base metal contiguous to the weld zone in flash-butt welded rail, the web of the rail has high tensile residual stresses and the head and base of the rail have compressive residual stresses. The web region is susceptible to failure since most of the weld zone of the rail is coarse grained and has porosity, inclusions and defects resulting from rapid solidification of molten metal entrapment in the weld. Efforts to reduce the amount of these tensile residual stresses require recognition of their causes. In this research, microscopic and macroscopic studies were carried out on vertical and horizontal sections of the weld zone in the head, web and base of the rail. Just after flash-butt welding, the temperature of the web between the current carrying copper electrodes is higher than the temperature of the head and base of the rail. Therefore, by cooling the weld zone to room temperature, the amount of web contraction between the electrodes is higher than the amount of base and head contraction and consequently tensile residual stresses are produced in the web at and near the weld zone. In the head and base of the rail, compressive residual stresses are developed.  相似文献   

3.
Abstract

In welding of high nitrogen steel (HNS), it is essential to control the nitrogen content and porosity in the weld metal. In this paper, the influence of shielding gas composition and heat input on the nitrogen content and porosity in the weld metal of HNS was investigated by gas tungsten arc welding. The experimental results indicate that the weld nitrogen content increases as N2 in the shielding gas is increased in the same heat input of welding. The weld nitrogen content decreases with increasing the heat input for pure argon used as a shielding gas, whereas it increases with increasing the heat input for the shielding gas including some nitrogen. The nitrogen pore can be avoided when the nitrogen content in the shielding gas is <4% in the heat input range of 528–2340 J mm–1.  相似文献   

4.
Abstract

The residual welding stresses in laser beam (LB) and tungsten inert gas (TIG) weldments of a titanium alloy in thin plate form were investigated experimentally in the present work. A hole drilling technique was used to measure the residual stresses in the weldments. The effects of the welding method and post-weld heat treatment (PWHT) on the residual stresses were analysed. The results show that (i) the residual stress distribution in the LB welded joints is similar to that obtained for traditional fusion welding processes, although the distribution zone is much narrower in LB welding, (ii) the residual stress in the heat affected zone for LB welding is about 100 MPa lower than that for TIG welding, and (iii) PWHT in vacuum greatly relieves the welding residual stress.  相似文献   

5.
6.
Abstract

A series of welds were fabricated in mild (ASTM A36) steel. The first pass was the entire length of the plate and each subsequent pass was indented ~25 mm. This allowed us to determine the change in hardness on a pass by pass basis by mapping the hardness over each weld pass.  相似文献   

7.
Abstract

In the present study, a high chromium white iron was diffusion bonded to an austenitic stainless steel, AISI 316L. The effects of bonding temperature and holding time at the reached temperature on microstructural developments across the joint region were investigated. After diffusion bonding, microstructural analysis including metallographic examination, energy dispersive X-ray (EDX), X-ray, microhardness measurements and shear strength was performed. From the results, it was seen that bonding temperature with holding time was effective on the formation of carbide (M3C) and width of the diffusion zone that affected the shear strength of the bonds.  相似文献   

8.
Abstract

Considerable residual stress and distortion can be produced by friction stir welding, impeding industrial implementation. Finite element analysis has been used to develop three innovative rolling methods that reduce residual stress and distortion in friction stir welds. Of the three methods, post-weld direct rolling where a single roller is applied to roll the top surface of the weld after the weld metal has cooled to room temperature proved the most effective. The residual stress predictions from the model compared favourably with residual stress measurements reported in an accompanying paper. Finally, the effectiveness of using post-weld direct rolling is illustrated with an industrial example of a large integrally stiffened panel, where the distortion was virtually eliminated.  相似文献   

9.
Abstract

Seamless tubing of C-250 maraging steel manufactured by the flow forming technique was joined by the electron beam welding process. Various post-welding heat treatments were conducted to improve the overall mechanical properties of the welded tubing. For the 480°C/6 h/air cooling post-weld aging treated maraging steel, a significant increment of 11% reversion austenite was present in the weld metal. Only the tensile strength of this aging treated metal met the required specification while its percentage elongation reached only 50% of the specification, attaining only 35% of the strength of the parent metal. For the post-welded solution + aging treated maraging steel, only the yield strength met the specification. Moreover, a significant amount of reversion austenite pools was also present at the grain boundaries of the material located at the weld metal. Although the homogenisation treatment could improve the hardness of the weld metal, it failed to have the tensile strength of the steel met the specification.  相似文献   

10.
Abstract

A new technique using non-contact electromagnetic forces has been proposed for controlling welding buckling distortion and residual stresses in welded thin plates. The experimental results show that the method can successfully eliminate the buckling distortion and reduce the residual stresses. Three-dimensional finite element modelling has been developed to study the evolution of the stress and strain throughout the welding and electromagnetic impacts. The predicted welding distortion and residual stresses are in good agreement with the experimental results. The numerical analyses show that the reduction in distortion and stress is a result of the change of the plastic strain field in the weld region: electromagnetic impacts reduce longitudinal compressive plastic strain in the local region near the weld, and even produce the tensile plastic strain. Moreover, it is found that the residual stress can promote the changes of the longitudinal plastic strain state under electromagnetic impact.  相似文献   

11.
Abstract

When a 800 MPa grade ultra-fine grained steel with ferrite grains less than 1 μm and dispersed fine cementite is welded, fine ferrite grains are coarsened resulting in remarkable softening in the heat affected zone (HAZ). The peak temperature at an arbitrary location in HAZ during welding was calculated by heat conduction analysis and the effect of welding thermal history on the microstructure of the UFG steel HAZ was examined by microscopic observation. Softening as a result of ferrite grain coarsening was observed in the region where the peak temperature reaches between 920 and 1300 K for the ultra-fine grained steel with an Ac 1 temperature of 980 K and Ac 3 of 1150 K. The formation of martensite–austenite constituents started as a second phase above the Ac 1 temperature and they curbed HAZ softening in the peak temperature range between 1000 and 1250 K.  相似文献   

12.
Abstract

Recent investigations show the possibility of shortened low-cost treatment of chromium alloyed tool steels in the lower bainitic state. But with these treatments just above the martensite start temperature remains still an amount of residual austenite. For better understanding of the reactions due to the transformation of austenite into lower bainite metallographic, studies completed by dilatometric tests have been carried out. Structural characteristics due to applied heat treatment processes are discussed and special changes of specific properties are discussed by example of the steel 100Cr6 (SAE 52100).  相似文献   

13.
Abstract

The through thickness residual stress of an eight pass butt welded plate joint is evaluated using inherent strain analysis. The residual stress distribution is obtained in detail along the thickness direction from measurements using multiple strain gauges. The residual stresses agree with the results of the thermal elastic–plastic analysis as well as the values obtained by direct measurement of the specimen surface, which is not used in inherent strain analysis. These results indicate that both inherent strain analysis and thermal elastic–plastic analysis are effective in evaluating through thickness residual stress. Therefore, each analysis method should be chosen after considering the object to be evaluated and the characteristics to be analysed.  相似文献   

14.
Abstract

Thermal spraying is a widely used and cost effective technique for the surface protection of engineering components. The spectrum of applications is vast: corrosion protection, wear resistance and abrasion resistance, thermal barriers, electrical (dielectric) coatings, etc. Process induced residual stress has long been recognised as an important factor influencing the integrity and overall performance of coatings. Residual stress generation during thermal spraying is a complex phenomenon. Significant efforts have been made to improve understanding of the evolution of residual stresses during deposition and to develop practical models for numerical prediction of stress distributions in coatings. Owing to the high penetrating power of neutrons and spatial resolution in the millimetre and submillimetre range, neutron diffraction is, perhaps, the most versatile method for stress determination, and has been used extensively for experimental validation of theoretical predictions. Examples of neutron diffraction residual stress results are presented to illustrate the capabilities of the technique: a thin (~0·3 mm) Mo/Mo2C composite HVOF coating, several examples of millimetre thick ceramic and metallic coatings, and thick coatings (~10 mm) of iron made by spray forming.  相似文献   

15.
熔化极电弧增材制造18Ni马氏体钢组织和性能   总被引:2,自引:2,他引:2       下载免费PDF全文
采用熔化极电弧增材工艺制备了成形良好的18Ni马氏体钢单墙体,研究了增材构件热处理前、后的组织力学性能. 结果表明,增材构件的微观组织主要是柱状树枝晶,沉积态增材构件组织和力学性能存在局部差异:构件组织顶部为马氏体,硬度平均值为360 HV;中部和底部区域则为马氏体和奥氏体且中部硬度平均值为468 HV,略高于底部硬度平均值437 HV;构件纵向抗拉强度(1375 MPa)高出横向抗拉强度(1072 MPa)约28.3%,对应的断后伸长率分别为1.1%和0.8%. 对增材构件进行825 ℃保温1 h的固溶热处理后,析出相重新溶入奥氏体,构件组织转变为马氏体,硬度值下降(平均值为328 HV),变化波动小;纵向和横向抗拉强度相当,分别为1025 MPa和1034 MPa,断后伸长率分别为6%和14%.  相似文献   

16.
Abstract

Welding induces residual stresses which in thin section structures may cause buckling distortion. The magnitude of longitudinal residual stress is critical in the prediction of buckling distortion, which affects numerous welding applications in the ship building, railroad and other industries. The objectives of this paper are to overview and evaluate modelling procedures for bucking distortion. Moving source two-dimensional (2D), three-dimensional (3D) small deformation, 3D large deformation, and 2D–3D applied plastic strain analyses are evaluated by comparing computed residual stress and distortion against experimental measurements. Guidelines for modelling welding distortion are developed along with an assessment of the efficiency and limitations of the various analysis methods.  相似文献   

17.
Abstract

The objective of the present study was to investigate the effect of nitrogen additions to the shielding gas on the ferrite content and residual stress in austenitic stainless steels. Autogenous gas tungsten arc (GTA) welding was applied on austenitic stainless steels 304 and 310 to produce a bead on plate weld. The delta ferrite content of the weld metals was measured using a Ferritscope. The residual stress in the weldments was determined using the hole drilling strain gauge method. The present results indicated that the retained delta ferrite content in type 304 stainless steel weld metals decreased rapidly as nitrogen addition to the argon shielding gas was increased. The welding residual stress increased with increasing quantity of added nitrogen in the shielding gas. It was also found that the tensile residual stress zone in austenitic stainless steel weldments was extended as the quantity of added nitrogen gas in the argon shielding gas was increased.  相似文献   

18.
Abstract

The aim of this research is to study the effect of an activating flux, two shielding gases (100%Ar and 50%Ar z 50%He) and a range of weld currents on the microstructure of autogeneous A-TIG welds on an austenitic stainless steel. Metallographic, Mössbauer, X-ray diffraction and magnetic permeability methods were used in the study to evaluate ferrite content in the welds. The increase in welding current coarsened the microstructure and increased the retained ferrite content in welds made with and without flux. The activating flux increases the ferrite content and changes the distribution of ferrite in the welds. The influence of flux on ferrite content is less significant in Ar/He than in Ar shield welds. The process of filling steel samples, currently used in the Mössbauer method, drastically changes the microstructure of the parent and melted austenitic stainless steels.  相似文献   

19.
Abstract

Flash-butt welding is used in the manufacture of continuously-welded rails. Finished welds typically exhibit high tensile residual stresses in the rail web and at the upper surface of the rail foot, which may increase the risk of fatigue failure in service. An understanding of the influence of the welding process, including post-weld cooling, on the residual stress distribution is necessary to improve the performance of flash-butt welds by post-weld heat treatment (PWHT), since incorrect treatment may have adverse effects on both residual stress and weld material characteristics. A finite element model has been developed to simulate post-weld cooling in flash-butt welded AS60 kg m–1 rail. Computed thermal histories for normal (air) cooling, rapid PWHT, and accelerated cooling (water spray) were used as inputs to calculate sequentially coupled stress–time histories, including phase transformations. In addition, the localised influence of the initiation time for rapid PWHT, after final upset, on the reduction of tensile residual stresses was investigated. Heating the rail foot immediately after final upset reduced tensile residual stresses in the web region of the weld. Preliminary numerical predictions showed that water quenching the entire weld region too soon after the austenite–pearlite transformation is completed can induce further tensile residual stresses without affecting the microstructure. The results of the numerical analysis can be used to modify the flash-butt welding procedure to lower residual stress levels, and hence improve weld performance.  相似文献   

20.
Abstract

Hydrogen embrittlement tests were performed on 0·254 mm diameter BS 5216 M4 high strength carbon steel wire using constant loads to give initial tensile stresses in the range 48–91% ultimate tensile stress. The wires were electrolytically charged with hydrogen in 4%H2SO4 at current densities of 75 and 150 mA cm–2. The failure times at each applied stress and charging rate were displayed on Weibull statistical plots and shown to correlate with a diffusion model of hydrogen transport. At high stresses, crack initiation occurred rapidly and the failure time was controlled by the rate of inward hydrogen diffusion to maintain a threshold concentration for crack propagation. At low applied stresses, crack initiation required a higher hydrogen concentration and occurred more slowly. In this case, the failure time was controlled by the size and location of the significant microstructural flaw at which crack initiation occurred. The model enabled failure times to be predicted in specimens with differing dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号