首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground tire rubber (GTR) was modified by sulfuric acid in order to improve its compatibility with and reinforcement of a polypropylene (PP) matrix. Polymer composites PP/GTR were prepared by melt mixing at different concentrations, with a maximum of 50 wt % of GTR. Studies by Fourier transform infrared spectroscopy (FTIR), surface specific area by BET (Brunauer, Emmett, and Teller), and scanning electron microscopy were used to characterize the untreated GTR and treated GTR, while the mechanical and thermal properties of the PP/GTR composites were assessed to understand how the surface treatment of GTR affected the mechanical and thermal properties of the composite PP/GTR. FTIR revealed the presence of sulfonic groups on the surface of sulfuric acid–treated GTR, and BET analyses showed an increase of about 625% in the specific surface area as a result of the high porosity produced by the treatment. In all composites containing treated GTR, a higher Young's modulus was obtained than for composites containing untreated GTR. Particularly, an increase of about 275% in the Young's modulus was obtained in composites with treated GTR (40 wt %) against that containing untreated GTR. However, a more significant reduction of the elongation at break was observed in composites containing treated GTR than in those containing untreated GTR. Also, an increase of the crystallization temperature of PP as a function of GTR was observed by differential scanning calorimetry, but the crystallinity of the composites was reduced by the addition of both untreated and treated GTR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44858.  相似文献   

2.
In this work, polypropylene (PP)‐ground tire rubber (GTR) blends are prepared by means of melt‐extrusion process using a co‐rotating twin screw extruder. The influences of types of compatibilizers and crosslinkers on the interfacial interaction state, mechanical and rheological properties of PP‐GTR blends are investigated systematically. Particularly, quantitative nano mechanic technique of atom force microscope was employed to examine the change in thickness of the interfacial transition layer between PP and GTR phase with variety of compatibilizer and crosslinker types. Results indicated that styrene‐b‐poly(ethylene‐ethylene/propylene)‐b‐polystyrene (SEEPS) and peroxide are optimal compatibilizer and crosslinker for interfacial interaction enhancement, respectively. The resultant PP‐GTR blend possesses tensile strength of 14.5 MPa, elongation at break of 307%, and permanent set of 16%. It was expected that reaction activities of the crosslinker with GTR and SEEPS would have a significant influence on the agglomeration of GTR particles and the interaction between PP and GTR phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45354.  相似文献   

3.
Abstract

Carbon black (CB) and carbon nanotubes (CNTs) filled natural rubber (NR) composites were prepared. In order to overcome the dispersion of CNTs in rubber matrix, the surface modification of CNTs with bis-(γ-triethoxysilylpropyl)-tetrasulphide (Si-69) was undertaken, and a two-step mixing process, i.e. the use of twin roll mill followed by mixing in a Haake Banbury mixer (TR-THM) was used. The structure and mechanical properties were investigated. The results show that the Si-69 treated CNTs (S-CNTs) were dispersed in the rubber matrix uniformly. Compared with CB/NR composites without CNTs, the S-CNTs/CB/NR composites have better mechanical properties. When the ratio of S-CNTs/CB/NR was 5 : 20 : 100, the tear strength was improved by ~60%, and the mechanical properties reached a maximum. Dynamical mechanical analysis (DMA) reveals that with increasing content of CNT, the elastic modulus of composites at room temperature increases, and the maximum loss tangent and the corresponding glass transition temperature of composites decrease.  相似文献   

4.
Abstract

The modification of polypropylene (PP) with a combination of ethylene/propylene rubber (EPR) and glass fibres (GF) is a well known route to improving its mechanical properties. This is because the reductions in stiffness and strength due to the presence of rubber particles are more than compensated by the addition of short glass fibres. This study has focused on the combined effects of glass fibres and rubber particles on the mechanical properties and mechanisms of deformation in PP–EPR–GF hybrid composites. Several composites with different amounts of rubber and short glass fibres were examined. To study possible synergistic effects, the total combined weight fraction of rubber and fibres was kept constant at 20%. The results of tensile tests show that the addition of glass fibres to PP–EPR blends promotes yield strength and modulus while reducing elongation at break. Optical microscopy shows that, in the damage zones of all specimens, deformation bands, which appear similar to crazes, are visible after stretching. Scanning electron microscopy shows crazelike features including some voids, which tend to deviate from in plane propagation near the ends of glass fibres. The dominant mechanism of deformation in PP–EPR–GF observed in this work appears to be a crazelike type of damage, which is believed to be highly localised dilatational shear banding, propagating via repeated cavitation.  相似文献   

5.
This research analyzes the effect of ground tire rubber (GTR) and a novel metallocene‐based ethylene–propylene copolymer (EPR), with high propylene content, on the morphology and mechanical behavior of ternary polymer blends based on a highly flowable polypropylene homopolymer (PP). The PP/EPR blends morphology, with very small domains of EPR dispersed in the PP matrix, indicates a good compatibility among these materials, which leads to a significant improvement on elongation at break and impact strength. The incorporation of EPR on the rubber phase of thermoplastic elastomeric blends (TPE) based on GTR and PP (TPEGTR) has a positive effect on their mechanical performance, attributed to the toughness enhancement of the PP matrix and to the establishment of shell‐core morphology between the rubber phases. The mechanical properties of the ternary blends reveal that TPEGTR blends allow the upcycling of this GTR material by injection molding technologies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42011.  相似文献   

6.
Attempts have been made to use different amount of ground tire rubber (GTR) powder as a partial substitute for natural rubber (NR) in thermoplastic elastomer based on linear low‐density polyethylene (LLDPE, 60 wt%) and NR (40wt%). Maleic anhydride (MA) and dicumyl peroxide (DCP) were used, during melt mixing of the compound, to modify GTR and vulcanize the rubber phases of the blends. Morphology of the blends was studied by scanning electron microscopy and rheological behavior investigated through rheomechanical spectroscopy. Mechanical properties of the blends were also measured, and the effect of GTR concentration on properties was evaluated. Obtained results showed that modification of GTR with MA and using DCP in the blends containing GTR improves the bonding between GTR and matrix. This leads to a distinctive rheological behavior and enhances tensile strength and elongation at break compared to its corresponding simple blend. It can be said that using of MA and DCP during melt mixing of thermoplastic elastomers based on LLDPE/NR containing GTR, concludes to a better dispersion of GTR and formation of morphology similar to that of a dynamic vulcanized thermoplastic elastomer, which improves interfacial bonding between phases and causes a dramatically increase in mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Abstract

Blends of ethylene propylene diene terpolymer (EPDM) rubber with thermoplastic polyolefins such as low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), high molecular weight polypropylene (PP), and polypropylene random copolymer grade (PP‐R) were prepared by melt mixing. The physico‐mechanical properties, equilibrium swelling in benzene, and aging properties of the binary blends were investigated, analyzing the effect of the rubber/thermoplastics ratio and the type of the thermoplastic material on these properties. The data obtained indicate that EPDM/PP‐R blend in 20/80 w/w% shows the highest physico‐mechanical properties with improved retained tensile strength at 90°C for 7 days. This blend ratio also gives excellent retained equilibrium swelling in benzene at room temperature for 7 days, although EPDM/LDPE blend in 80/20 w/w% imparts the highest retained elongation at break at 90°C for 7 days.  相似文献   

8.
New nanocomposite thermoplastic vulcanizates (TPVs) comprising dynamically cross‐linked nanoscale EPDM rubber particles dispersed throughout the polypropylene (PP) matrix have been prepared by both batch and continuous melt blending of PP with EPDM in the presence of vulcanizing ingredients, nanoclay and maleated EPDM (EPDM‐g‐MA) as compatibilizer. X‐ray diffraction, linear melt viscoelastic measurement, and tensile mechanical behavior results revealed that the developed microstructure is strongly affected by the type of the melt compounding process as well as the route of material feeding. When EPDM phase was precompounded with a vulcanizing agent, nanoclay, and EPDM‐g‐MA prior to the melt blending with PP, not only nanosize cross‐linked rubber particles appeared uniformly throughout the PP continuous phase, but also the melt blending leads to the significant enhancement of the mechanical properties compared with counterpart samples prepared by one‐step melt mixing process. Also better dispersion of nano layers in the rubber compound before melt blending with PP results in higher mechanical properties of the resulted TPV. POLYM. ENG. SCI., 56:914–921, 2016. © 2016 Society of Plastics Engineers  相似文献   

9.
Abstract

Ground tyre rubber (GTR) powder has been treated using a novel surface grafting process allowing the incorporation of various chemical functional groups onto the polymer surface. The GTR was functionalised with methacrylic acid by photoinitiated polymerisation. The process comprises two steps: UV irradiation of GTR in the presence of air, followed by grafting of methacrylic acid (MA) onto the GTR surface. The presence of reactive carboxy groups, which was confirmed by titration, provides the possibility of covalent linkage with reactive groups when the powder is blended with a suitable matrix polymer.

The effectiveness of the process was assessed by examining the tensile and Charpy impact properties of polyamide and epoxy compounds containing ungrafted and grafted GTR. A significant improvement in the tensile properties of polyamide was observed on adding methacrylic acid grafted GTR. The grafted GTR also worked as an impact modifier in epoxy compounds. The best results to date were achieved when methacrylic acid grafted GTR was added to polyurethane formulations.  相似文献   

10.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

11.
S. Jose  S. Thomas  J. Karger-Kocsis 《Polymer》2006,47(11):3874-3888
Blends of polyamide 12 (PA12) and isotactic polypropylene (PP) were prepared by melt mixing in an internal mixer in presence and absence of compatibilisers. The compatibiliser used was maleic anhydride functionalised polypropylene (PP-g-MA). Effect of compatibilisation on the blends has been evaluated from the morphological parameters derived from scanning electron micrographs (SEM) of cryogenically fractured and extracted surfaces of the specimens. The uncompatibilised blends showed two-phase unstable morphology due to high interfacial tension and coalescence effects in the absence of favourable interactions at interface between the individual phases. Incompatibility increased as the concentration of dispersed phase in the blend increased. Compatibilisation stabilised the morphology by reducing the particle size as well as interparticle distance and enhancing the interfacial area and interface adhesion. A critical concentration of compatibiliser required for effective compatibilisation (CMC) was observed beyond which there was no net improvement in interfacial properties and was considered as the point of interfacial saturation. Experimental results were compared with the compatibilisation theories of Noolandi and Hong and Leibler and based on the calculated average interfacial area occupied per compatibiliser molecule it was concluded that the molecular state of compatibiliser at interface changed with concentration. It was supported by the rate constant for change in interfacial tension (K) values which experienced a maximum at CMC followed by drastic reduction. Mechanical properties of the uncompatibilised blends showed inferior properties. It was found that compatibilisation significantly improved the mechanical properties. A good correlation has been observed between the mechanical properties and morphological parameters.  相似文献   

12.
Crushed tire rubber particles (CR) have been dispersed into a recycled poly(carbonate) matrix (rPC) to obtain an eco‐friendly plastic (EFP). A positive synergy was expected from the association of an elastomeric phase to a tough thermoplastic matrix, helping on the other hand to develop a plastic with low impact on the environment. Mechanical melt‐mixing alone cannot provide a suitable interface, and led to blends with poor mechanical properties. Consequently, we have investigated different strategies to improve the EFP properties: First, the rubber surface has been treated by flaming or washing with dichloromethane and second, two copolymers, poly(ethylene‐co‐ethyl acrylate‐tert‐hydroxyl methacrylate) (E‐EA‐MAH) and poly(ethylene‐co‐methyl acrylate‐ter‐glycidyl methacrylate) (E‐MA‐GMA), were used to compatibilize CR particles with rPC matrix by reactive melt‐mixing in an internal mixer. The resulting blends mechanical properties were studied through static tension experiments and interpreted to the light of electronic microscopy fractography analysis and nanoindentation experiments. Significant gain of mechanical properties can be obtained by decreasing CR size under 140 μm (especially for CR contents between 5 and 20% m/m). To reach similar properties with rubber particles of diameter over 140 μm (but under 350 μm), it is necessary to activate their surface by either dichloromethane washing or flaming. Additional use of a compatibilizer extends the plastic behaviour domain of the EFP. rPC‐20% w/w CR is the best alternative material of our study. POLYM. ENG. SCI., 47:1768–1776, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Reactive extrusion of polypropylene (PP)/natural rubber (NR) (90/10) blends was conducted in the presence of a peroxide [1,3-bis(t-butylperoxy)benzene] and coagent (trimethylolpropanetriacrylate, TMPTA). Effects of peroxide and coagent content were studied in terms of melt index (MI), melt viscosity, morphology, thermal, and mechanical properties. At a constant content of the coagent, melt viscosity increased at a low and decreased at a high content of the peroxide. On the other hand, melt viscosity increased monotonically with the coagent concentration at constant peroxide content. The increase and decrease of viscosity were interpreted in terms of crosslinking and chain scission of PP, which governed the rubber domain size and mechanical properties of the reactive blends. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

It is proposed that a non-polar filler can reduce interfacial energies between polar and non-polar polymers. Experiments have been carried out to test this hypothesis using carbon black as the filler in blends of natural rubber (NR) and a nitrile rubber (NBR) with an acrylonitrile content of 45%. Blends of NR–NBR (70/30) were prepared in an internal mixer with varying amounts of carbon black. The dramatic decrease in domain size on addition of carbon black was nonetheless lower than that predicted. Further experiments showed that the amount of carbon black available at the interface for compatibilisation was influenced by preferential incorporation into the lower viscosity elastomer (NBR). Thus, elastomers of similar viscosity should be added to the mixer prior to the carbon black in order to maximise the amount of ‘free’ unwetted carbon black present when the elastomers are blended together. Blending experiments carried out under these conditions resulted in a morphology close to the prediction based on thermodynamic theory.  相似文献   

15.
Abstract

Thermochemically devulcanised ground tyre rubber (GTRDL) was added to fresh rubber compositions, which were then melt blended with low density polyethylene (LDPE). Styrene/butadiene rubber (SBR), natural (NR), and ethylene/propylene/diene (EPDM) rubbers were selected as the fresh rubbers. During blending, dynamic curing was achieved using sulphuric, phenolic, and peroxide curing agents. Some of the GTR was decomposed in the presence of 6 phr RegenTM Agent-S reclaiming compound before being incorporated into the blends. The resulting thermoplastic dynamic vulcanisates had constant compositions, namely LDPE/rubber/GTR=50:25:25. Sulphuric and phenolic curing agents proved to be most suitable for dynamic curing. The thermoplastic dynamic vulcanisates with the best mechanical performance contained SBR and EPDM rubbers. The observed improvements in mechanical performance were attributed to chain entanglement and co-crosslinking in the interphase between the GTRDL particles and the surrounding matrix (i.e. with the fresh rubber and/or LDPE). The phase morphology, which was assessed using scanning electron microscopy on the etched surfaces of cryogenically fractured thermoplastic dynamic vulcanisate compositions, is discussed.  相似文献   

16.
Abstract

Rubber seed oil (RSO) and epoxidised rubber seed oil (ERSO) were used as secondary plasticiser cum heat stabiliser in polyvinyl chloride (PVC). High temperature mixing studies, dynamic mechanical analysis, hot air aging tests and colour stability tests indicated that ERSO could be used as a less volatile secondary plasticiser and heat stabiliser for PVC in combination with dioctyl phthalate (DOP). The tensile properties of the compound containing 50 : 10 DOP/ ERSO were found to be comparable to that containing 60 parts of DOP per 100 parts PVC.  相似文献   

17.
Abstract

It is suggested that binary systems of rubber vulcanisation containing thiourea proceed by a nucleophilic reaction mechanism. The exact mechanism of the chemical reactions involved when binary accelerator systems are used in rubber vulcanisation is not fully understood even now. It differs with the systems and the nature of the elastomer used. In the present work, a derivative of thiourea, N-amidino N'-phenyl thiourea (APT), was studied as a secondary accelerator along with tetramethyl thiuram disulphide (TMTD)/mercaptobenzothiazyl disulphide (MBTS) in the sulphur vulcanisation of styrene butadiene rubber. Thiourea binary systems were used as controls. The binary systems containing APT are very effective in reducing the optimum vulcanisation time. APT being more nucleophilic than thiourea, is more reactive here (as observed by the reduction in cure time). A nucleophilic reaction mechanism is indicated in the vulcanisation reaction under review. Different concentrations of APT were tried in various mixes using standard recipes, and reference mixes were also evaluated. The optimum dosage of APT required has been derived based on the cure characteristics of the mixes and the physical properties of the vulcanisates.  相似文献   

18.
In this work, polymerization of caprolactam (CL) was carried out in the presence of acrylonitrile butadiene rubber (NBR) during the reactive melt‐mixing process. During shear mixing, NBR particles swelled and dissolved in the molten CL, which led to separation and distribution of rubber particles to nanoscale in the dissolution stage. Then, in an internal mixer, supertough Polyamide 6 was prepared via melt polymerization of CL/NBR mixture, sodium caprolactam as a catalyst, and hexamethylene diisocyanate as an activator. The effects of various concentrations of catalyst and activator on the initiation time of the reaction were determined. Physical and mechanical properties of different formulations prepared via reactive melt blending were determined by tensile and impact measurements, differential scanning calorimetry, Fourier‐transform infrared spectroscopy, X‐ray scattering techniques, transmission electron microscopy, and dynamic mechanical thermal analysis. Experimental results showed that a recipe with 3% nitrile rubber in a CL/NBR mixture enhances the physical and mechanical properties the best, compared with other formulations. This condition led to the formation of NBR nanospheres during melt polymerization of Polyamide 6 as well. J. VINYL ADDIT. TECHNOL., 21:116–121, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
S. Al-Malaika  W. Kong 《Polymer》2005,46(1):209-228
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test.The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.  相似文献   

20.
This paper investigates the use of thermogravimetric analysis to study the kinetics of thermal degradation of ground tire rubber (GTR) obtained from reclaimed tires. We analyzed the composition of GTR and determined the content percentage of its components (volatile compounds, rubber, and ash) using thermogravimetric analysis (TGA). T 1 and T 2 temperature peaks corresponding to the maximum normalized weight loss rate (NWLR) of the two main rubber components of tires NR (natural rubber) and a BR/SBR (butadiene/styrene-butadiene rubber blend) using the Gaussian deconvolution method has been determined. The influence of GTR particle size and heating rate on reaction rates (dx/dt) and on degradation time during the degradation process has been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号