首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper aims at investigating the microstructure, failure mode transition, peak load and energy absorption of DP600 dual phase steel during the tensile-shear test. It was found that the welding current has profound effect on the load–displacement characteristics. In the low welding current, welds failed in interfacial failure mode. Increasing welding current resulted in sufficient weld nugget growth to promote double-sided pullout failure mode with improved mechanical properties. Further increase in the welding current caused expulsion and failure mode was changed to single-sided pullout with reduced energy absorption capability. It was found that the fusion zone size is the key parameter controlling the mechanical properties of DP600 resistance spot welds in terms of peak load, maximum displacement and failure energy.  相似文献   

2.
Highly cold worked (HCW) low carbon steel sheets with cellular structure in the range of 200 to 300 nm are fabricated via constrained groove pressing process. Joining of the sheets is carried out by resistance spot welding process at different welding currents and times. Thereafter, failure behavior of these welded samples during tensile-shear test is investigated. Considered concepts include; failure load, fusion zone size, failure mode, ultimate shear stress, failure absorbed energy, and fracture surface. The results show that HCW low carbon steel spot welds have higher failure peak load with respect to the as-received one at different welding currents and times. Also, current limits for failure mode transition from interfacial to pullout or from pullout to tearing are reduced for HCW samples. Fusion zone size is the main geometrical factor which affects the failure load variations. Ultimate shear stress of spot welds is increased with decreasing the heat input and for HCW samples at a specific welding current and time, it is lower than that of the as-received ones. Before pullout mode, failure absorbed energy (FAE) for HCW low carbon steel spot welds is higher than that of the as-received one, but after failure mode transition, trend would be vice versa and FAE of the as-received spot welds is extremely higher (about 3 times). In addition, spot welds fracture surface (in interfacial failure mode) for HCW sample is more dimpled which indicates higher energy absorption than that of the as-received one.  相似文献   

3.
This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.  相似文献   

4.
Abstract

This paper aims at investigating the correlation between metallurgical and mechanical characteristics of DP980 dual phase steel resistance spot welds with attention focused on the transition in failure mode from interfacial to pullout mode during the tensile shear test. It was studied whether the conventional/industrial weld size criteria can produce pullout failure modes for DP980 spot welds. Based on theoretical analysis and experimental results, there is a minimum fusion zone size which beyond that the interfacial failure mode is avoided. Results showed that by increasing welding current, pullout failure mode was promoted due to increasing the fusion zone size and encouraging martensite tempering in subcritical heat affected zone (HAZ). Fusion zone size was proved to be key factor controlling mechanical properties of DP980 welds in terms of peak load, ductility and failure energy.

Ce document vise à examiner la corrélation entre les caractéristiques métallurgiques et mécaniques de soudures par points par résistance de l’acier biphasé DP980, en mettant l’accent sur la transition du mode de défaillance de mode d’interface à mode par arrachement lors de l’essai de traction-cisaillement. On voulait savoir si les critères conventionnels ou industriels de taille de la soudure pouvaient produire des modes de défaillance par arrachement des soudures par points de DP980. L’analyse théorique et les résultats expérimentaux indiquent qu’il y a une taille minimale de la zone de fusion au-delà de laquelle on évite le mode de défaillance d’interface. Les résultats ont montré qu’en augmentant le courant de soudage, le mode de défaillance par arrachement était favorisé, à cause de l’augmentation de la taille de la zone de fusion et de l’encouragement du revenu de la martensite dans la HAZ sous critique. On a démontré que la taille de la zone de fusion constituait une composante clé contrôlant les propriétés mécaniques des soudures de DP980 en ce qui a trait à la charge de pointe, à la ductilité et à l’énergie de défaillance.  相似文献   

5.
Boron steel, classed as an ultra high-strength steel (UHSS), has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. UHSS spot welds exhibit unique hardness distributions, with a hard nugget and outlying base material, but with a soft heat-affected zone in-between these regions. This soft zone reduces the strength of the weld and makes it susceptible to failure. Due to the interaction of various weld zones that occurs during loading, there is a need to characterize the loading response of the weld for accurate failure predictions. The loading response of certain weld zones, as well as failure loci, was obtained through physical simulation of the welding process. The results showed a significant difference in mechanical behavior through the weld length. An important result is that instrumented indentation was shown to be a valid, quantitative method for verifying the accuracy with which weld microstructure has been recreated with regard to the target weld microstructure.  相似文献   

6.
The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three dif-ferent types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was dis-cussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding prehea-ting current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.  相似文献   

7.
The application of advanced high strength steels in automotive industry has highlighted the need for research into spot weldability of these steels.Using weld lobe diagrams,the spot weldability of DP600 steel was found to be poor with conventional weld schedules.An enhanced weld schedule consisting of two pulses with reduced current on the second pulse gave a substantial increase in the lobe width;the first pulse removed the zinc coating and the second pulse controlled the nugget growth.A data acquisition system was designed to monitor weld expulsion during the weld operation.Of the three possible control strategies proposed,especially with AC welding equipment,the dynamic resistance signal is easily obtained and the least expensive.Expulsion phenomena,microstructural characterization and mechanical properties of spot-welded hot dipped galvanized DP600 steel and interstitial free steel were investigated.Further work on dissimilar welds in DP 600 and HSLA 350 was also conducted with emphasis on tensile and fatigue properties and fracture characteristics.The performance of dissimilar spot welds was different from that of the similar spot welds in each of the HSLA350 and DP600 steels.The DP600 weld properties played a dominating role in the hardness and tensile properties of the dissimilar spot welds.However,the fatigue performance of the dissimilar welds was similar to that of the HSLA welds.Details will be presented at the conference.  相似文献   

8.
Abstract

This paper addresses the mechanical performance of dissimilar resistance spot welds between DP600 and AISI 1008 low carbon steels. The weldability lobe was established and proper welding conditions to produce welds with sufficient size and without expulsion were determined. Correlations among the process parameters (welding current and welding time), physical spot weld attributes (fusion zone size and electrode indentation depth) and mechanical performance (peak load and energy absorption) were analysed. It was shown that the increases in welding current and welding time result in increases in fusion zone size and electrode indentation depth. In the low heat input welding condition, welds failed in interfacial failure mode. Increasing welding heat input results in sufficient weld size and promotes pullout failure mode with improved mechanical properties in terms of peak load and failure energy. However, a further increase in heat input caused metal expulsion and the failure mode was changed to partial pullout–partial thickness mode with reduced energy absorption capability.

Cet article discute du rendement mécanique de soudures dissimilaires par points entre les alliages à faible carbone DP600 et AISI 1008. On a établi le lobe de soudabilité et l’on a déterminé les conditions appropriées de soudage afin de produire des soudures d’une taille suffisante et sans expulsion. On analyse la corrélation entre les paramètres du processus (courant de soudage et temps de soudage), les attributs physiques de la soudure par points (taille de la zone de fusion et profondeur d’indentation de l’électrode) et le rendement mécanique (charge maximale et absorption d’énergie). On a montré qu’une augmentation du courant de soudage et du temps de soudage avait pour résultat une augmentation de la taille de la zone de fusion et de la profondeur d’indentation de l’électrode. Sous condition de soudage à faible apport de chaleur, les soudures défaillaient en mode de défaillance à l’interface. L’augmentation de l’apport de chaleur de soudage avait pour résultat une taille de soudure suffisante et favorisait le mode de défaillance par arrachement avec des propriétés mécaniques améliorées quant à la charge maximale et à l’énergie de défaillance. Cependant, une augmentation additionnelle de l’apport de chaleur résultait en l’expulsion du métal et le mode de défaillance se changeait en un mode d’arrachement partiel-épaisseur partielle avec capacité réduite d’absorption d’énergie.  相似文献   

9.

Medium-Mn transformation-induced plasticity steels have great potential to significantly reduce vehicle weight and improve fuel economy due to their outstanding combination of high strength and excellent ductility. One bottleneck to the application is their poor weldability resulting from their high Mn contents. In this paper, three resistance spot welding set-ups, including no shim, an interstitial-free steel shim at the faying interface (shim-in) and shims against the electrodes (shim-out), were incorporated to investigate the weldability of Fe-7Mn-0.14C medium-Mn steel. Tensile-shear, cross-tension, and microhardness tests were used to evaluate the mechanical properties of the welds. Experimental results demonstrated that the failure mode of the welds transitioned from the interfacial fracture in the case of no shim to the desired nugget pull-out fracture in the shim-out set-up, resulting in dramatical improvements in both peak loads and their corresponding extensions during the tensile-shear and cross-tension tests. In contrast, the shim-in set-up made no improvement. What can contribute to such improvement was then discussed on the basis of observed morphologies and microstructures of welds.

  相似文献   

10.
In this paper, resistance spot weldability of high‐Mn steels were investigated in order to get high reliability in welded joints of automotive components. Microstructural characterizations, cross‐tensile test (CTT), microhardness tests of spot welded parts were conducted. The effects of weld current on the microstructural characteristics, mechanical properties, and fracture modes were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The hardness in the weld nugget was observed to be lower than that in the base metal (BM). In CTT, the failure initiation was observed to occur at the boundary of the weld nugget. Also welding imperfections of welded parts were investigated. Liquation cracking in heat affected zone (HAZ), porosity, and shrinkage cavity were found most common welding defects in welded parts. Furthermore, the effects of welding imperfections on weld quality and failure criteria were identified and discussed.  相似文献   

11.
Properties of friction-stir-welded 7075 T651 aluminum   总被引:17,自引:0,他引:17  
Friction stir welding (FSW), a new welding technique invented at TWI, was used to weld 7075 T651 aluminum, an alloy considered essentially unweldable by fusion processes. This weld process exposed the alloy to a short time, high-temperature spike, while introducing extensive localized deformation. Studies were performed on these solid-state welds to determine mechanical properties both in the longitudinal direction, i.e., within the weld nugget, and, more conventionally, transverse to the weld direction. Because of the unique weld procedure, a fully recrystallized fine grain weld nugget was developed. In addition, proximate to the nugget, both a thermomechanically affected zone (TMAZ) and heat affected zone (HAZ) were created. During welding, temperatures remained below the melting point and, as such, no cast or resolidification microstructure was developed. However, within the weld nugget, a banded microstructure that influences room-temperature fracture behavior was created. In the as-welded condition, weld nugget strength decreased, while ductility remained high. A low-temperature aging treatment failed to fully restore T651 strength and significantly reduced tensile ductility. Samples tested transverse to the weld direction failed in the HAZ, where coarsened precipitates caused localized softening. Subsequent low-temperature aging further reduced average strain to failure without affecting strength. Although reductions in strength and ductility were observed, in comparison to other weld processes, FSW offers considerable potential for welding 7075 T651 aluminum.  相似文献   

12.
This paper aims at investigating structure‐properties relationships in dissimilar resistance spot welding of AISI 304 austenitic stainless steel (SS) and AISI 1008 low carbon steel (CS). Microstructural characterization, microhardness test and the tensile‐ shear test were conducted. It was shown that the shape of the SS/CS fusion zone (FZ) is unsymmetrical and the final fusion line shifts from sheet/sheet interface into the higher resistivity side (i.e. AISI 304). FZ microstructure was ranged from ferrite‐austenite to full martensite depending on the dilution ratio of the base metals. The variation of SS/CS dissimilar welds failure mode was explained in terms of hardness/microstructure characteristics. It was concluded that to ensure pullout failure mode, welding parameters needed to adjust so that the FZ size is sufficiently large and dilution is sufficiently high to produce a martensite FZ. Fusion zone size at CS side proved to be the most important controlling factor of SS/CS peak load and energy absorption. Finally, the mechanical properties of SS/CS dissimilar welds were compared with SS/SS and CS/CS similar welds.  相似文献   

13.
Liu  L.  Xiao  L.  Feng  J.C.  Tian  Y.H.  Zhou  S.Q.  Zhou  Y. 《Metallurgical and Materials Transactions A》2010,41(10):2651-2661
Resistance spot welding of AZ31 magnesium alloys from different suppliers, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), was studied and compared in this article. The mechanical properties and microstructures have been studied of welds made with a range of welding currents. For both groups of welds, the tension-shear fracture load (F C) and fracture toughness (K C) increased with the increase in welding current. The F C and K C of AZ31-SA welds were larger than those of AZ31-SB welds. The fracture surfaces of AZ31-SB welds were relatively flatter than those of AZ31-SA. Microstructural examination via optical microscope demonstrated that almost all weld nuggets comprised two different zones, the columnar dendritic zone (CDZ), which grew epitaxially from the fusion boundary, and the equiaxed dendritic zone (EDZ), which formed in the center of the nugget. The nature and extent of the CDZ seemed to be critical to the strength and toughness of spot welds because of its position adjacent to the inherent external circular crack-like notch of spot welds and the stress concentration in this region. The width and microstructure of the CDZ were different between AZ31-SA and AZ31-SB. The AZ31-SA alloy produced finer and shorter columnar dendrites, whereas the AZ31-SB alloy produced coarser and wider columnar dendrites. The width of the CDZ close to the notch decreased with the increase of current. The CDZ disappeared when the current was higher than a critical value, which was about 24 kA for AZ31-SA and 28 kA for AZ31-SB. The microhardness of the two base materials was the same, but within the CDZ and EDZ, the hardness was greater in AZ31-SA than AZ31-SB welds. It is believed that the different microstructures of spot welds between AZ31-SA and AZ31-SB resulted in different mechanical properties; in particular, K C increased with the welding current because of the improved columnar-to-equiaxed transition.  相似文献   

14.
In this work, a systematic analysis of the effect of tool offsetting on the morphological, structural, and mechanical properties of 6082-T6 aluminum to copper-DHP friction-stir welds was performed, enabling full understanding of Al-Cu bonding structure and failure mechanisms. Important relations between tool positioning and the thermomechanical phenomena taking place during welding were established. Tool offsetting was revealed to be an effective way of solving one of the most important concerns in Al/Cu friction-stir welding, i.e., the formation of large amounts of intermetallic-rich structures, which deeply influence the final strength and surface morphology of the welds. Actually, for welds produced without tool offsetting, it was found that the formation of fluidized intermetallic-rich structures promote the formation of internal decohesion areas inside the nugget, which have a detrimental effect on weld strength. For welds carried out with tool offsetting, intermetallic formation is almost suppressed, but important metallurgical discontinuities in the vicinity of large copper fragments, dispersed over the nugget, and at the nugget/copper interface were also found to have a detrimental effect on weld strength.  相似文献   

15.
Resistance spot welding of AZ31 magnesium alloys from different suppliers, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), was studied and compared in this article. The mechanical properties and microstructures have been studied of welds made with a range of welding currents. For both groups of welds, the tension-shear fracture load (F C) and fracture toughness (K C) increased with the increase in welding current. The F C and K C of AZ31-SA welds were larger than those of AZ31-SB welds. The fracture surfaces of AZ31-SB welds were relatively flatter than those of AZ31-SA. Microstructural examination via optical microscope demonstrated that almost all weld nuggets comprised two different zones, the columnar dendritic zone (CDZ), which grew epitaxially from the fusion boundary, and the equiaxed dendritic zone (EDZ), which formed in the center of the nugget. The nature and extent of the CDZ seemed to be critical to the strength and toughness of spot welds because of its position adjacent to the inherent external circular crack-like notch of spot welds and the stress concentration in this region. The width and microstructure of the CDZ were different between AZ31-SA and AZ31-SB. The AZ31-SA alloy produced finer and shorter columnar dendrites, whereas the AZ31-SB alloy produced coarser and wider columnar dendrites. The width of the CDZ close to the notch decreased with the increase of current. The CDZ disappeared when the current was higher than a critical value, which was about 24 kA for AZ31-SA and 28 kA for AZ31-SB. The microhardness of the two base materials was the same, but within the CDZ and EDZ, the hardness was greater in AZ31-SA than AZ31-SB welds. It is believed that the different microstructures of spot welds between AZ31-SA and AZ31-SB resulted in different mechanical properties; in particular, K C increased with the welding current because of the improved columnar-to-equiaxed transition.  相似文献   

16.
 为了研究胶焊工艺对接头力学性能的影响,并分析胶焊接头的温度场演变规律,针对1.5 mm厚的SPCC冷轧钢薄板,开展胶接点焊和电阻点焊的正交试验,并应用极差和方差分析得到最佳工艺参数,借助材料性能试验机对两种接头进行单向静拉伸试验获得接头的失效载荷,对比分析点焊和胶焊接头的力学性能,建立胶焊接头的仿真模型,分析接头熔核区温度场的演变规律,采用超声波C扫描成像检测熔核直径。结果表明,影响胶焊接头拉剪载荷的主、次因素依次为焊接电流、焊接时间、电极压力;胶焊接头和点焊接头的平均失效载荷分别为11 071.12和10 179.72 N,胶层的引入提高了接头的失效载荷;随着焊接时间的增加,熔融的金属液增多,熔核沿着径向和轴向呈椭圆形扩张,熔核中心的径向温度均高于轴向温度,模拟获得的熔核尺寸与超声C扫描测得熔核直径分别为6.17、5.61 mm。  相似文献   

17.
The weldability of Zn-coated steel sheets 0.7 mm thick was investigated using resistance spot welding process. The effect of welding current, welding time and holding time on weld nugget characteristics, microstructure, and mechanical properties was discussed. Then, the possibility of replacing this welding process with laser beam welding was outlined. In this respect, quality of weld joints as a function of zinc removal by grinding prior to welding was evaluated. It is found that resistance spot welding current and time are the most significant parameters in affecting both expulsion and Zn-induced porosity. Expulsion was avoided and Zn-induced porosity was reduced with the decrease in welding current and/or welding time. Zn-induced porosity was completely eliminated by zinc-removal by grinding prior to welding. The best weld joint concerning nugget characteristics, soundness and tensile shear strength was obtained using welding current of 10 kA, weld cycle of 20, holding cycle of 18. Unlike resistance spot welds, high quality of CO2 laser welds free from Zn-induced porosity could be made without zinc removal by grinding before welding.  相似文献   

18.
Internal features and defects such as joint line remnant, kissing bond, and those induced by an initial gap between the two parent sheets were investigated in AA2198-T851 friction stir welded joints. They were compared with the parent material and to defect-free welds obtained using a seamless sheet. The cross-weld tensile strength was reduced by the defects by less than 6 pct. The fracture elongation was not significantly affected in view of experimental scatter. Fracture location, however, changed from the thermomechanically affected zone (retreating side) to the defect in the weld nugget for the welds bearing a kissing bond and for some of the gap welds. The kissing bond was shown by EBSD to be an intergranular feature; it fractured under a normal engineering stress close to 260 MPa during an in situ SEM tensile test. Synchrotron tomography after interrupted tensile testing confirmed opening of the kissing bond. For an initial gap of 23 pct of the sheet thickness, intergranular fracture of copper-enriched or oxide-bearing grain boundaries close to the nugget root was evidenced. The stress and strain state of cross-weld specimens loaded under uniaxial tension was assessed using a 3D finite element, multi-material model, determined on the basis of experimental data obtained on the same specimens using digital image correlation.  相似文献   

19.
超高强热成型钢板的点焊工艺性能研究   总被引:2,自引:0,他引:2  
对试验用超高强热成型钢的电阻点焊工艺进行了研究,探讨了焊接电流对点焊接头压痕深度、焊核直径、焊透率以及拉断力的影响规律,讨论了电流模式对点焊试样断裂点位置和中心偏析的影响,分析了焊接接头软化区、中心偏析的原因。研究结果表明,该钢种具有良好的点焊性能。  相似文献   

20.
This paper aims at investigating metallurgical and mechanical characterization of low carbon steel laser spot welds. Microstructural examinations, microhardness tests and quasi‐static tensile‐shear tests were preformed. Mechanical properties of the welds were described in terms of peak load and failure mode. The effects of laser spot welding parameters including pulse frequency, laser energy, welding speed, pulse width and welded circle diameter, on low carbon steel laser spot weld performance were studied using the Taguchi design of experiment method. It was found that the effective laser pulse energy is the controlling factor in the determination of mechanical strength of laser spot welds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号