首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The accumulative roll bonding process was carried out on an AA3003 aluminum alloy sheet up to eight cycles. The electron backscattering diffraction (EBSD) method was employed to investigate the microtextural development in the ARB processed sheets. The results indicate that with increasing the number of cycles, the overall texture intensity increases even up to the eighth rolling pass and a strong texture develops. The main textural components are the copper and Dillamore components of which the intensities increase with increasing number of cycles. Measurement of microhardness and lamellar spacing of grains in the processed sheets revealed that the presence of second phase particles in this aluminum alloy can promote the occurrence of dynamic recovery during the ARB process.  相似文献   

2.
The investigation of the microstructure and mechanical properties has been conducted on AA3003 alloy produced by a novel intense plastic straining process named accumulativev roll-bonding (ARB). The results show that ultra-fine grained 3003 alloy having mean grain size of 700–800 nm was successfully produced by the 250°C-ARB. The average grain sizes of 250°C-ARB samples were reduced greatly from about 10.2 m initially to 700–800 nm. After 6 cycles of ARB, the whole volume of the material was filled with ultra-fine grains with high angle boundaries. The tensile strength of the ARB processed 3003 alloy (after 6 cycles) is considerably higher than that of the initial material, and about 1.5 times higher than that of commercially available fully-hardened (H18) 3003 alloy. Strengthening in ARB processed 3003 alloy may be attributed to strain hardening and grain refinement hardening.  相似文献   

3.
The crystal plasticity finite element method (CP-FEM) is used to investigate the influence of microstructure on the bending behaviour of the heat treatable aluminium alloy AA7108. The study comprises two materials obtained from the AA7108 aluminium alloy by different thermo-mechanical treatments. The first one is an as-cast and homogenized material consisting of large grains with random texture, while the second one is a rolled and recrystallized material having refined grains with weak deformation texture. The behaviour of the two materials in plane-strain bending is investigated numerically and compared qualitatively to existing experimental data. The crystallographic texture and grain morphology of the materials are explicitly represented in the finite element models. The numerical results display a strong effect of the grain morphology on the bending behaviour, the surface waviness and the development of shear bands. These results are consistent with the experimental observations. The simulations further indicate that crystallographic texture affects the bending behaviour of the rolled and recrystallized material.  相似文献   

4.
Abstract

Control of earing behaviour at the hot band stage is a critical requirement for successful manufacture of aluminium alloy sheet for beverage cans. The present study has combined production scale experiments with laboratory examinations to investigate the effect of various material and process parameters on microstructure, texture, and earing of the resulting products. It is shown that optimisation of the product is strongly dependent on (i) iron content of the alloy, (ii) ingot homogenisation temperature, (iii) finish hot rolling temperature, and (iv) heating rate during hot band annealing. Earing level after annealing is shown to depend on the balance between cube (+ Goss) texture intensity and the volume of material having almost randomly spread orientations. Pronounced 0/90° earing tendency is usually associated with coarse and elongated grain structures. A model is shown which represents the microstructure–texture evolution as a competition between cube/Goss grains, which nucleate systematically within transition bands, and randomly oriented grains, which nucleate in the vicinity of coarse second phase particles.

MST/1032  相似文献   

5.
Accumulative roll bonding of two aluminium alloys, AA2219 and AA5086 was carried out up to 8 passes. During the course of ARB, the deformation inhomogeneity between the two alloy layers results in interfacial instability after the 4th pass, necking of the AA5086 layers after the 6th pass and fracture along the necked regions after the 7th and 8th pass. The EBSD analysis shows deformation bands along the interfaces after 8 passes of ARB. The ARB-processed materials predominantly show characteristic deformation texture components. The weak texture after the 2nd pass results from the combination of a weakly-textured starting AA2219 layer and a strongly-textured starting AA5086 layer. A strong deformation texture forms due to the high imposed strain after a higher number of ARB passes. Subgrain formation and related shear banding induces copper/S components in the case of the small elongated grains, while planar slip leads to the formation of brass component in the large elongated grains.  相似文献   

6.
The microstructure and mechanical properties of Mg-Sn-Ca-Ce alloys with different Ce contents(0.0,0.2, 0.5, 1.0 wt%) were studied at room temperature. Ce additions to ternary Mg-Sn-Ca alloy resulted in grain refinement as well as a change in the category of second phase from CaMgSn to(Ca, Ce)Mg Sn and Mg_(12)Ce. The volume fraction of second phase increased with rising Ce content, which aggravated the restriction of DRXed grain growth during the extrusion process and eventually led to texture weakening of as-extruded Mg-Sn-Ca based alloys. In terms of plasticity, owing to vigorously activated basal slip and homogeneous distributed tensile strain in tension, the tensile ductility of as-extruded alloys reached the maximum value of 27.6% after adding 0.2 wt% Ce, which enhanced by about 26% than that of ternary MgSn-Ca alloy. However, further Ce additions(0.5 and 1.0 wt%) would coarsen the second phase particles and then impair ductility. The tension-compression yield asymmetry of as-extruded Mg-Sn-Ca ternary alloy was alleviated greatly via Ce additions, due to the joint effects of grain refinement, increased amount of strip distributed second phase particles and texture weakening.  相似文献   

7.
Abstract

The evolution of recrystallisation textures in the commercial aluminium alloy 3103 has been investigated by means of a three-dimensional orientation distribution function (ODF) analysis. The global texture measurements were supplemented by local texture measurements by means of the electron backscattering pattern (EBSP) technique in SEM and optical microscopy, inparticular grain size measurements. The evolution of recrystallisation textures was determined by the competition between particle stimulated nucleation (PSN) and nucleation from cube bands. Precipitated particles were found to have a higher retarding effect on the nucleation from deformation zones around particles than on the nucleation from cube bands. The result of this is a strong cube texture and a large grain size in cases of a strong precipitation reaction. This phenomenon has also been discussed theoretically in terms of a semiquantitative model.  相似文献   

8.
Abstract

An analysis of the effects of alloy additions on grain refinement in a series of model and commercial aluminium alloy compositions is reported. The data of Birch and Fisher published earlier describing grain refinement in 32 systems, including AA3004, AA5083, AA6063, and AA7050, are considered in terms of the supercooling effect of each alloy addition. A simple model describing grain size in terms of additive supercooling effects of individual alloy additions is proposed which fits the data reasonably well. Deviations from simple additive behaviour are evident in systems where strong intermetallic interactions occur. Interaction coefficients among solutes are invoked to explain these deviations. Individual alloying effects on grain refinement are treated in terms of constitutional supercooling parameters, and behaviour is shown to be similar to that described in earlier studies. Zirconium is shown to have a general poisoning effect in a range of alloy compositions.  相似文献   

9.
With a new two-pass deformation, a fine-grained AA7050 alloy was obtained owing to small particles which can affect the grain refinement. The banded structures were produced in the elongated grain interiors after the 1st-pass deformation at 300 °C. And deformation bands containing dislocation arrays and small spherical particles were obtained. A few new fined grains appeared along the elongated grain boundaries. After the 2nd-pass deformation at 430 °C, isolated chains of new fine grains were developed in the elongated grain interiors. The boundary glide and the increase of grain boundary misorientation due to cumulative strain could refine the elongated grains. The pinning effect of the particles accelerated the formation of deformation bands. The increase of deformation temperature promoted the rapid evolution of grain refinement during the deformation. The strength of the fine-grained AA7050 alloy was enhanced while the ductility was decreased.  相似文献   

10.
Abstract

To investigate the microstructural development and corresponding texture evolution during repeated shear deformation, specimens of AA 3003 Aluminium alloy were deformed by continuous confined strip shearing based on equal channel angular pressing. Strip specimens were deformed by the shear forming process during up to eight passes, equivalent to effective strains of ~4.8. Texture evolution in the AA 3003 strips during the shear deforming process was studied by comparing the experimentally measured textures with simulated ones. Electron backscattered diffraction was employed to investigate detailed changes in microtextures and microstructures during repeated shear deformation. Softening associated with deformation is believed to be responsible for the formation of ultrafine grains and the random texture resulting from repeated shear deformation.  相似文献   

11.
Abstract

Hot bands of direct chill cast (DC) and continuous cast (CC) aluminium alloy 5052 were cold rolled to different reductions after being annealed at 454 ° C for 4 h. The texture evolution during cold rolling was investigated for both DC and CC AA 5052 by determining the orientation distribution functions of the cold rolled specimens via X-ray diffraction. Texture evolution during cold rolling was predicted by empirical formulas of the variation of the texture components with true strain. The results show that the processing method (DC versus CC) has an effect on the texture of annealed hot bands and the texture evolution during subsequent cold rolling.  相似文献   

12.
Abstract

The microstructure and texture of three dilute aluminium alloys after hot deformation and annealing was assessed; In particular, the influence of deformation temperature, strain rate, and strain on the annealed texture was examined, as well as the effect of alloy composition. The microstructures of the commercially pure materials studied (Al, Al+1%Mn and Al+1%Mg) varied in the volume fraction of coarse intermetallic particles, the type of dispersoid present, and the level and type of solute in solid solution. Furthermore, the initial stages of recovery and recrystallisation were studied in detail for one of the alloys (commercially pure Al). It was found that the main recrystallisation texture component was the cube and its strength, as well as the recrystallised grain size, depended strongly on the deformation strain. The deformation strain rate and temperature, and the alloy composition also strongly influenced the grain size and cube texture strength. These results are discussed in the context of current theories for cube nucleation within cube bands in the hot deformed microstructure. The present work was carried out as part of a wider research programme, partially supported by the European Union (Brite/Euram funded), to develop micromechanical models to describe the evolution of microstructure and texture during hot deformation and annealing of aluminium alloys.

MST/3376  相似文献   

13.
Abstract

The effect of inert particles on grain structure development from alloy melt during laser rapid solidification has been investigated. It is found that the presence of Al2O3 particles may disrupt the usual epitaxial grain structure evolution of an aluminium 7075 alloy when processed by laser surface remelting. This result, in addition to observations of crystal termination at the particles and grain refinement in particle dense regions, indicates that a mechanism of particle restricted grain growth operates.  相似文献   

14.
The study on the structure stability of AA3003 alloy produced by an intense plastic straining process named accumulative roll bonding (ARB) has been conducted. The results show that continuous recrystallization took place in the ARBed 3003 alloy with increasing the annealing time at 250°C and increasing the annealing temperature to 275°C. While, discontinuous recrystallization began in some regions after 300°C annealing, and nearly finished after 400°C annealing. Furthermore, an unusual tensile behavior was observed in this alloy after annealing at 250–275°C. The Hall-Petch dependence was observed in the plot of microhardness versus d –1/2 of the ARBed 3003 alloy, but its dependence slope was changed. The ultra-fine grains (<1 m) formed in the ARBed 3003 alloy can be stable until annealing at 250°C for 1 h, and the fine grains (<2 m) can be stable until annealing at 275°C for 1 h. Therefore, grain structure formed in the ARBed 3003 alloys after intense plastic strain is reasonably stable. In addition, the mechanism of structure stability and mechanical behavior were also discussed.  相似文献   

15.
It is well known that the second phase particles have an effect on recrystallization and grain growth behaviour of an alloy. Particularly the bimodal distribution of second phase particles has an effect which is opposite in sense where coarse second phase particles (> 1 μm) stimulate nucleation while fine particles exhibit Zener drag. In the literature, the effect of zirconium addition to aluminium alloys has been well documented in order to produce superplasticity by giving ultra fine grain size to the alloy. Addition of zirconium produces Al 3 Zr particles which pin the grain boundaries during recrystallization and grain growth. In the present work, zirconium was added to a commercial Al-Cu-Mg alloy and by heat treatment Al 3 Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, i.e. Al 3 Zr particles and found to be rod shaped and identified to be cubic ordered L 1 2 phase with a lattice parameter of 0.408 nm. Further, it was observed that fine (100 nm) Al 3 Zr particles promote only continuous recrystallization which is polygonization of subgrains and subgrain growth. It was found that the fine dispersion of Al 3 Zr particles inhibits both recrystallization and grain growth in the commercial Al-Cu-Mg alloy.  相似文献   

16.
Accumulative roll bonding (ARB) as a method of severe plastic deformation is a well-established process to produce ultrafine-grained (UFG) sheet materials with extraordinary mechanical properties. In this work ARB is applied to combine different sheet materials in order to tailor the materials properties by producing sandwich-like structures. The high strength aluminium alloy AA5754, after 4 ARB cycles (N4), is used as a core material. To achieve high corrosion resistance and good visual properties, it is cladded with commercially pure aluminium AA1050A (N4) at room temperature and alternatively with AA6014 (N4) at 230 °C. All materials are UFG and satisfactory bonding between the different layers of aluminium alloys is achieved. Nanoindentation measurements reveal that there is a sharp transition in hardness at the interface. The yield and tensile strength of the core material are fully retained in the case of the AA6014/AA5754 sandwich. The strength of the AA1050A/AA5754 sandwich is slightly lower compared to the core material but still twice as high as the clad material. The serrated yielding effect which is strongly visible in tensile tests on the pure AA5754 alloy completely disappears in the sandwich sheets, which means the surface quality is strongly enhanced.  相似文献   

17.
Abstract

The vertical Bridgman directional solidification equipment has been used in several investigations to simulate direct chill casting of wrought aluminium alloys. As a basis for such investigations and alloy developments, it is important to have an understanding of the performance of the furnace used during simulation of the casting conditions. In this investigation the thermal conditions in the furnace have been analysed in detail, both by measurements and by mathematical modelling. The growth characteristics of the furnace, such as gradient, growth rates and cooling rates have been compared to conditions in large ingots. The direct chill casting conditions, which the simulations have been compared to, are casting of slabs of 330 and 600 mm thickness of an aluminium AA3003 type alloy. The results show that the experiments are able to simulate the cooling conditions in the ingots except from the surface zone. Comparisons of the microstructures have been made and a good agreement has been obtained for structure parameters such as grain size and DAS.  相似文献   

18.
Rapidly solidified 2024 aluminium alloy powders were mechanically milled, then consolidated to bulk form. The microstructural changes of the powders in mechanical milling (MM) and consolidation process were characterized by X-ray diffraction analyses and transmission electron microscopy observations. The results showed that mechanical milling reduced the grain size to nanometer, dissolved the Al2Cu intermetallic compound into the aluminium matrix and produced an aluminium supersaturated solid solution. During consolidation process. the grain size increased to submicrometer, and the Al2Cu and Al2(Cu, Mg, Si, Fe, Mn) compounds precipitated owing to heating. Increasing consolidation temperature and time results in obvious grain growth and coarsening of second phase particles. The tensile yield strength of the consolidated alloy with submicrometer size grains increases with decreasing grain size, and it follows the famous HallPetch relation  相似文献   

19.
对双辊铸轧3003铝合金板材进行了3种预处理退火,研究不同预处理工艺下的冷轧板材在380~500℃退火时晶粒组织和再结晶织构的变化规律。结果表明:最优化预处理工艺为610℃/12h+460℃/12h,高温阶段第二相尺寸发生粗化,低温阶段基体中Mn的过饱和固溶度显著降低,两者均有利于提高后续退火时的再结晶形核率。500℃退火时,在粗大第二相的附近产生了粒子诱发形核机制,降低了再结晶织构强度;并且退火时几乎不存在析出,析出相对再结晶形核的抑制作用甚微,从而得到了晶粒细小、织构弱的再结晶组织。  相似文献   

20.
The present study describes the course of microstructure evolution during accumulative roll bonding (ARB) of dissimilar aluminum alloys AA2219 and AA5086. The two alloys were sandwiched as alternate layers and rolled at 300 °C up to 8 passes with 50% height reduction per pass. A strong bonding between successive layers accompanied by substantial grain refinement (∼200–300 nm) is achieved after 8 passes of ARB. The processing schedule has successfully maintained the iso-strain condition up to 6 cycles between the two alloys. Afterwards, the fracture and fragmentation of AA5086 layers dominate the microstructure evolution. Mechanical properties of the 8 pas ARB processed material were evaluated in comparison to the two starting alloy sheets via room temperature tensile tests along the rolling direction. The strength of the 8 pass ARB processed material lies between that of the two starting alloys while the ductility decreases after ARB than that of the two constituent starting alloys. These differences in mechanical behavior have been attributed to the microstructural aspects of the individual layer and the fragmentation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号