首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
Crosslinking and processing characteristics of polyethylenes (PEs) with different molecular architectures, namely high‐density polyethylene (HDPE), linear low‐density polyethylene (LLDPE), and low‐density polyethylene (LDPE), were studied with regard to the effects of peroxide modifications and coolant flow rates. Dicumyl peroxide (DCP) and di‐tert‐butyl peroxide (DTBP) were used as free‐radical inducers for crosslinking the PEs. The characteristics of interest included normalized gel content, real‐time temperature profiles and their cooling rates, exothermic period, crystallinity level, crystallization temperature, and heat distortion temperature. The experiments showed that LDPE exhibited the highest normalized gel content. The real‐time cooling rates, taken from the temperature profiles for all PEs before the crystallization region, were greater than those after the crystallization region. The cooling rate of the PEs increased with the presence of DCP, whereas the crystallization temperature of the PEs was lowered. The HDPE appeared to show the longest exothermic period as compared with those of the LLDPE and LDPE. The exothermic period showed an increase with increasing coolant flow rate, but it was decreased by the use of DCP. As for the effect of peroxide type, the gel content and cooling rate of the PE crosslinked by DCP were higher than those for the PE crosslinked by DTBP. The DTBP was the more effective peroxide for introducing crosslinks and simultaneously maintaining the crystallization behavior of the PE. J. VINYL ADDIT. TECHNOL., 20:80‐90, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

4.
硅烷交联聚乙烯电力电缆绝缘料的研制   总被引:3,自引:0,他引:3  
采用两步法制备了硅烷交联聚乙烯(PE)电力电缆绝缘料。以双螺杆挤出机为反应器,以低密度聚乙烯(LDPE)和线型低密度聚乙烯(LLDPE)为基础树脂,考察了影响PE接枝交联的主要因素(如基础树脂的配比,交联剂的用量及种类,引发剂、抗氧剂的用量等),得出了具有良好性能的硅烷交联PE电力电缆绝缘料的配方(质量份数):LDPE为85.00phr,LLDPE为15.0H0phr,硅烷W为0.60phr,硅烷Q为1.40phr,引发剂为0.12phr,抗氧剂为0.20phr。  相似文献   

5.
硅烷接枝热水交联聚乙烯共混物的研究   总被引:10,自引:0,他引:10  
本文介绍了采用过氧化二异丙苯( DCP) 为引发剂,二月桂酸二丁基锡( DBTL) 为催化剂,在双螺杆挤出机中硅烷( VTES) 与聚乙烯(PE) 共混物的接枝反应,以及通过热水交联获得硅烷交联聚乙烯共混物。研究了不同牌号聚乙烯的选取,正交实验优化配方以及热水交联时间对产品性能的影响。结果表明:选取适当的高密度聚乙烯,低密度聚乙烯及线性低密度聚乙烯共混物进行硅烷接枝交联,可获得具有良好的力学性能和良好的加工性能的交联PE 共混物;正交实验获得DCP、VTES 及DBTL 的最佳用量分别为0 .10 份、2 .5 份、0 .15 份;热水交联的合适时间约为12 小时,在此之前拉伸强度、维卡软化点及凝胶率随交联时间而升高,断裂伸长率随时间而降低,此后,几者均趋于稳定。  相似文献   

6.
The silane grafting and moisture crosslinking of different grades of polyethylene have been investigated. Three types of polyethylene (HDPE, LLDPE, and LDPE) with different molecular structures and similar melt flow indices were selected. The initiator was dicumyl peroxide (DCP), and the silane was vinyltrimethoxysilane. The grafting reaction was carried out in an internal mixer. The extent of grafting and the degree of crosslinking were determined, and hot‐set tests were carried out to evaluate the crosslink structure of the different polyethylenes. The LLDPE had the highest degree of grafting, while the LDPE had the least. The rate of crosslinking for LDPE was higher than that of HDPE and LLDPE. The gel content of LDPE was higher than that of HDPE and LLDPE. Hot‐set elongation and the number‐average molecular weight between crosslinks (Mc) were lower for LLDPE and LDPE than for HDPE. Increasing the silane/DCP percentage led to peroxide crosslinking, thereby decreasing the Mc and hot‐set elongation. The number‐average molecular weight (Mn), molecular weight distribution, and number of chain branches were the most important parameters affecting the silane grafting and moisture crosslinking. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

8.
硅烷接枝交联LDPE、LLDPE及其共混物的结构研究   总被引:4,自引:0,他引:4  
利用红外光谱、凝胶渗透色谱、热延伸试验、差示扫描量热法、扫描电子显微镜等方法研究了低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)及其共混物的乙烯基硅烷接枝及交联产物的分子结构、熔融行为和形态。结果表明:硅烷接枝后,LDPE、LLDPE的重均摩尔质量小幅增加;硅烷接枝交联能力为:LLDPE〉LDPE/LLDPE共混物〉LDPE;接枝和交联使LDPE、LLDPE及其共混物的结晶度降低,晶粒变得不均匀;硅烷接枝和交联能增加LDPE/LLDPE共混物的相容性;交联结构提高了LDPE、LLDPE及其共混物的抗冲性。  相似文献   

9.
Formulations of chemically crosslinked and radiation‐crosslinked low‐density polyethylene (LDPE) containing an intumescent flame retardant such as ammonium polyphosphate were prepared. The influence of blending LDPE with a poly(ethylene vinyl acetate) copolymer (EVA) and the effects of various coadditives, including polyethylene grafted with maleic anhydride (PEgMA), vinyl silane with boric acid, and talc, on the mechanical and thermal properties were investigated. Chemical crosslinking by dicumyl peroxide and crosslinking by ionizing radiation from an electron‐beam accelerator were both used and compared. Improved mechanical properties were observed by the partial replacement of LDPE with EVA. Similar mechanical or thermal properties were observed with coadditives such as PEgMA and vinyl silane with boric acid. The addition of a small amount of talc improved the tensile strength of the formulations. All crosslinked formulations showed good thermal stability on the basis of the retention of mechanical properties after thermal aging for 168 h at 135°C and a hot‐set test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
To obtain high‐rebound resilience of crosslinking low‐density polyethylene (LDPE) foam and decrease the foam density at the same content of foaming agent, the melt viscoelasticity of LDPE with different compositions (ethylene vinyl acetate [EVA], polyethylene‐octene elastomer, and crosslinking agent) was investigated by dynamic rheology test. Then, LDPE/EVA/(polyethylene‐octene elastomer) foams with different composition ratios were produced by a continuous foaming process and investigated by the rebound resilience test. The results show that the melt viscoelasticity behavior of LDPE and its blends in the molten state possessed more melt elasticity behavior after the crosslinking was introduced. Meanwhile, the rebound resilience of LDPE foam was increased 54% at the lower foam density (0.031 g/cm3). It could meet the requirements of sports mats for high‐rebound resilience (>50%) and decrease the material cost when EVA was introduced into the foaming system. J. VINYL ADDIT. TECHNOL., 22:61–71, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
A series of low‐density polyethylene (LDPE) blends with different amounts of ethylene–vinyl–acetate (EVA) was prepared and irradiated with 10 MeV electron beam in the range of 0–250 kGy at room temperature in air. EVA was used as a compatibilizer and softener in four different amounts: 5, 10, 20, and 30 wt %, based on polyethylene (PE). The crosslinking of the samples was studied on the basis of gel‐content measurements as well as some thermal and mechanical properties of the specimens. The results indicated that the LDPE and LDPE–EVA blends could be crosslinked by a high‐energy electron beam, of which their thermal and mechanical properties changed effectively, however, because of EVA content of the polymer; the blends were more sensitive to lower doses of radiation. These studies were carried out to obtain a suitable compound for heat‐shrinkable tubes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1049–1052, 2004  相似文献   

12.
硅烷交联型复合半导电塑料   总被引:1,自引:0,他引:1  
对于硅烷交联型复合半导电塑料的研究表明,合理的选择EVA,炭黑,交联剂,引发剂,催化剂的种类和适宜的用量,仅仅是提高接枝和凝胶质量分散的必要条件,体系环境的酸碱度才是可以交联的充分条件,只有在体系的环境呈现出中性或弱的碱性时,硅烷才可能与PE和EVA充分接枝和交联。  相似文献   

13.
The effects of linear low density polyethylene (LLDPE) grafting with vinyltrimethoxysilane by different types and contents of peroxide were studied. When grafting silane onto LLDPE, with 0.10 phr of Dicumyl peroxide (DCP) or 0.05 phr content of 2,5‐Dimethyl‐2,5‐di (tert‐butyl‐peroxy)‐hexane (DHBP), it was found that the grafting effect was improved; however, as Di(2‐tert‐butylperoxypropyl ‐(2))‐benzene (DIPP) or excess DHBP was used, LLDPE was supposed to cause self‐crosslinking, which reduced the grafting effect of silane and was invalid in the processing of extrusion. In this study, vinyl trimethoxysilane (VTMS) was grafted onto various polyethylenes (HDPE, LLDPE, and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to crosslink utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to crosslink during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for crosslinked LDPE and LLDPE. Mechanical and thermal properties of the crosslinked PE are much better than that of uncrosslinked PE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2383–2391, 2005  相似文献   

14.
王亚珍  张辉  李曙光  张丽叶 《塑料》2004,33(1):20-23
辐射交联LDPE/EVA混合体系泡沫片材表观光滑、柔软,手感好,表观密度较小,材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度。进一步研究了产生宏观性能差异的原因是辐射交联LDPE/EVA混合体系泡沫片材制备成型工艺的特殊性,体系的交联度对制品性能影响很大。通过凝胶分析知道交联度与辐照剂量、LDPE树脂的物理性能和EVA树脂在混合体系的含量有关。此外,LDPE树脂的物理性能和EVA在混合体系的含量对材料宏观性能也有影响。  相似文献   

15.
Thermally stable materials can be achieved by crosslinking. This article presents the thermal aging and thermal energy storage properties of ethylene–octene copolymer (EOR) and low‐density polyethylene (LDPE) blends as affected by silane crosslinking. Fourier transform infrared spectroscopy revealed a similar degree of silane grafting among the various blend compositions. However, the highest crosslink content was observed in EOR, whereas the lowest was found for LDPE. From melting temperature and heat of fusion data, a linear relationship between the amount of the crystalline component and the crosslink content was found. The decrease in crystallinity due to crosslinking was very limited, which implied a high thermal energy storage capacity of the silane‐crosslinked products and their good mechanical properties at room temperature. Furthermore, a strong ability to retain the properties after thermal aging indicated good thermal stability of the materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Blends of low‐density polyethylene (LDPE) and poly[ethylene‐co‐(vinyl acetate)] (PEVA), crosslinked by electron‐beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB‐exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures, thus supporting the idea that the crosslinking density at a given irradiation dose depends on the amorphous portions of the polymers. Addition of trimethylolpropane trimethacrylate as a radiation sensitizer enhanced the gel content of the neat polyethylene significantly, while the addition of an antioxidant showed the reverse effect. A significant improvement in the tensile strength of the neat PEVA samples was obtained upon EB radiation up to 210 kGy. The irradiated LDPE/PEVA blends showed improved tensile strength and elongation at break when compared to LDPE. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
利用拉伸试验、红外光谱、凝胶渗透色谱、差示扫描量热法、流变表征等方法测试了交联聚乙烯绝缘料用基础树脂的性能,并研究了制备硅烷交联和过氧化物交联聚乙烯绝缘料的基础树脂组成。结果表明,交联聚乙烯绝缘料用LDPE树脂的基本性能:MFR为2.0g/10 min,密度为0.920g/cm3,熔点为107℃左右,拉伸强度大于12MPa,断裂伸长率大于580%,介电常数小于2.3,相对支化度2.34左右。硅烷交联聚乙烯绝缘料宜用LLDPE和LDPE的共混物做基础树脂,而过氧化物交联聚乙烯绝缘料的基础树脂用LDPE即可。  相似文献   

18.
Crosslinking of homemade low‐density polyethylene (LDPE) was performed by electron‐beam (EB) irradiation. The gel content of the EB‐exposed LDPE was determined by the solvent‐extraction method. The degree of crosslinking was also evaluated by a hot set measuring test. The results obtained from both the gel–sol and the hot set methods showed that the degree of crosslinking was dependent on the deposited energy in LDPE samples. Increasing the absorbed dose increased the degree of network formation. The LDPE with higher molecular weight yielded higher efficiency of crosslinking at the same irradiation dose. The effect of irradiation dose on the molecular weight between crosslinks (Mc), glass‐transition temperature, and free volume were calculated. Mechanical test results showed that the tensile strength of the samples increased with increase in the irradiation dose up to 150 kGy and then slightly decreased with further increasing the deposited energy. The elongation at break decreased with increasing the absorbed dose. The results obtained from differential scanning calorimetry exhibited a small reduction in the melting point and the degree of crystallinity of the EB‐exposed LDPE samples compared to those of the untreated samples. The effect of crosslinking on the electrical properties of the irradiated samples was insignificant. The dielectric constant of the treated samples remained nearly constant within the irradiation dose range, although the dissipation factor increased slightly with increasing the absorbed dose. The results obtained from characterizing the EB‐induced crosslinking of homemade polyethylene, including LH0030 and LH0075, showed the higher molecular weight polyethylene (LH0030) as a preferred option for wire and cable insulation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1959–1969, 2002  相似文献   

19.
The effect of incorporation of the two different fillers, i.e. calcium carbonate and magnesium hydroxide, over a concentration range of 0–35% w/w on mechanical and burning properties and hot set test of polyethylene (PE) has been studied. The incorporation of either of these fillers deteriorates mechanical properties such as percent elongation at break and tensile strength of PE. However, modification of PE not only mitigates the reduction in these properties, but brings enhancement in all the aforementioned properties. A clear difference in these properties for the incorporation of each of these fillers to just PE, silane‐grafted but uncured PE, and silane cross‐linked PE has been found. These properties follow the order of superiority as: cross‐linked PE > silane‐grafted uncured PE > physically filled PE. The different properties due to physical bonding of filler, physical bonding in the presence of polar silane grafted onto PE, and that of chemical bonding of filler in cross‐linked PE has been discussed and analyzed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1928–1933, 2006  相似文献   

20.
Low-density polyethylene/ethylene–vinyl acetate copolymer (LDPE/EVA) blend was irradiated by γ-ray and then expanded by heat as a foamed material. The EVA content in the LDPE/EVA blend was benefited to form a gel. The gel fraction values of LDPE/EVA blend with 30% EVA content were higher than those of other blends in a same given dose; its gel fraction value was 1.7 times as those values of the LDPE without EVA. The gel fractions of the LDPE/EVA blend were increased with radiation dose in oxygen, in air, and in nitrogen, and the formation of gel was limited by oxygen. The oxidation products of the foam of the LDPE/EVA blend were observed in nitrogen, in oxygen by Fourier transform IR spectra. The LDPE/EVA blend system has no protection effect from oxidation in comparison with the LDPE system without EVA, which has less oxidation product than those without EVA in a same given gel fraction. The gel fraction of the LDPE/EVA blend around 25–35%, radiation dose 25±5 kGy, irradiated by γ-ray in air or in nitrogen, with higher expansion ratio (19), smaller cell diameter (0.175 mm), lower apparent density (0.042 g/cm3), higher tensile strength (0.40 MPa), and longer elongation at break (290–360%) foam of the LDPE/EVA blend were selected. These were optimum condition for application in this system. The relations among gel fraction of the LDPE/EVA blend, expansion ratio, apparent density, average cell diameter, and mechanical properties of the foam were discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号